In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright–Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.