Negative selection in humans and fruit flies involves synergistic epistasis

Mashaal Sohail, Olga A. Vakhrusheva, Jae Hoon Sul, Sara L. Pulit, Laurent C. Francioli, Genome of the Netherlands Consortium, Alzheimer's Disease Neuroimaging Initiative, Leonard H. van den Berg, Jan H. Veldink, Paul I. W. de Bakker, Georgii A. Bazykin, Alexey S. Kondrashov, Shamil R. Sunyaev

Science, 5 May 2017

Thibault Latrille RAGE meeting - January 17 2018

Outline of the presentation

III. Sohail et al. - Theory III. Sohail et al. - Results

IV. Reproductibility of the study.

I. Why are we talking about epistasis in a RAGE meeting?

Negative selection involves synergistic epistasis

Why are we talking about epistasis in a **RAGE** meeting?

Latrille Thibault Negative selection involves synergistic epistasis

Part I.

"[...] Sohail et al. found that deleterious loss-of-function mutations are further away from each other in the genome than expected by chance, which suggests that genetic interactions are driving selection. [...] **This explains why high levels of variation can be maintained and why sex and recombination are advantageous.**"

Science report, 2017

Is recombination advantageous ?

Part II. Sohail *et al.* - Theory

Dault Negative selection involves synergistic epistasis

How to measure linkage desequilibrium (LD) at the genome-wide level?

Pair-wise LD

Association

Antagonistic epistasis

Independence

Repulsion Synergistic epistasis

Measure of pair-wise LD

Measure of genome-wide LD

Part III. Sohail *et al. - Results*

CC-BY-SA 2018

Dault Negative selection involves synergistic epistasis

Loss-of-function (LOF) mutations compared to missense and synonymous mutations.

using Stouffer's method (11) (P = 0.0003).

Genome-wide LD compared to pair-wise LD

Table 1. Negative linkage disequilibrium (LD) between rare LoF alleles in human and D. melanogaster

genomes. For humans, only singletons, and for flies, only alleles up to a minor allele count of 5, are included (see tables S2 and S3 for other frequency cut-offs). Net LD is normalized per pair of alleles and per pair of loci (11). A one-sided *P* value was obtained for σ^2/V_A by permutation, and a joint *P* value for all three human data sets shown (GoNL, ADNI, MinE) was computed by meta-analysis using Stouffer's method (11) (coding synonymous *P* = 0.999, missense *P* = 5.155 × 10⁻⁴, LoF *P* = 0.002). The number of samples is given in parentheses for each data set.

Variant type	Mean	σ^2/V_A	Net LD	
			Per pair of	Per pair
			derived alleles	of loci
		Humans	;	
••••••	Genor	ne of the Netherlai	nds GoNL (495)	•••••••••••••••••••••••••••••••••••••••
Synonymous	30.26	1.675	0.022	4.554 × 10 ⁻⁸
Missense	60.88	2.077	0.018	3.609 × 10 ⁻⁸
Nonsense	1.67	0.929	-0.039	-8.013×10^{-8}
Splice	0.90	0.953	-0.049	-1.008×10^{-7}
LoF	2.58	0.930	-0.029	-5.848 × 10 ⁻⁸
	E	uropean ancestry	ADNI (714)	
Synonymous	38.99	2.077	0.028	2.709 × 10 ⁻⁸
Missense	77.98	2.008	0.013	1.268×10^{-8}
Nonsense	2.10	0.933	-0.032	-3.126 × 10 ⁻⁸
Splice	1.16	0.878	-0.104	-1.020×10^{-7}
LoF	3.26	0.930	-0.022	-2.126×10^{-8}
		Dutch MinE (601)	
Synonymous	42.93	1.749	0.017	2.414×10^{-8}
Missense	79.34	1.960	0.012	1.675×10^{-8}
Nonsense	1.89	1.057	0.028	3.898 × 10 ⁻⁸
Splice	0.95	0.972	-0.033	-4.641×10^{-8}
LoF	2.83	0.996	-0.001	-1.727×10^{-9}
		D. melanoga	ster	
		Zambian DPGP	3 (191)	·····
Synonymous	3577.06	57.473	0.016	1.658×10^{-6}
Missense	2051.52	18.536	0.008	6.710×10^{-7}
Nonsense	10.21	0.928	-0.007	-4.139×10^{-7}
Splice	2.60	0.948	-0.020	-1.308×10^{-6}
LoF	12.81	0.929	-0.005	-3.298×10^{-7}

CC-BY-SA 2018

Latrille Thibault

Part IV. Reproductibility of the study

CC-BY-SA 2018

Dault Negative selection involves synergistic epistasis

Next-Generation Sequencing ENS de Lyon - Carine Rey & Marie Semon

Part I (3 days): from raw data to variant calling in humans.

Part II (3 days): reproducing Sohail et al using 1000 genomes SNP dataset

https://omictools.com

Reproducing Sohail et al on 1000G dataset (1/3)

Reproducing Sohail et al on 1000G dataset (2/3)

Reproducing Sohail et al on 1000G dataset (3/3)

Conclusions

I. Not so sure that epistasis is negative genome-wide in humans as stated in Sohail et al.

II. The evolutionary advantage of recombination is still an open question. Negative epistasis is not a fondamentaly necessary assumption.

III. Discrepancy between theory and data in the field of recombination.

"Models that address the evolution of recombination rate were generated to explain the evolutionary advantage of recombination, rather than quantitative differences in rate among individuals." Dapper & Payseur, 2017

