UNIL | Université de Lausanne é

Snakemake for
reproducible analyses

UNIL 2023

Marina Braso-Vives!, Alexandre Laverré!, Romain Feron! & Thibault Latrille?

1: UNIL, DEE, SIB. 2: UNIL, DBC Marina.BrasoVives@unil.ch; Alexandre.Laverre@unil.ch ; Thibault.Latrille@unil.ch

mailto:Marina.BrasoVives@unil.ch
mailto:thibault.latrille@unil.ch
mailto:thibault.latrille@unil.ch

IS THERE A REPRODUCIBILITY CRISIS?

7% 52%
Don't know Yes, a significant crisis
2 s
No, there is no X ‘
crisis — '

1,576

researchers
surveyed

38%
Yes, a slight
crisis
enature

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Let's try this wonderful
method on our data !

Language

Version
File format

Metadata

Readibility

Parameter option

Availability

References

Kim YM, Poline JB, Dumas G. Experimenting with reproducibility: a case study of robustness in bioinformatics. Gigascience. 2018;7(7):giy077.

How to make croissants? (reproducibly)

e Use a comprehensive recipe (a.k.a. workflow management system)

Workflow management systems

e Purpose : implement reproducible, portable, and scalable data analyses

e Two “parts”:

o Workflow definition language = implement the workflow

o Workflow execution system = run the workflow in variable environments

e Multiple systems exist. Most popular ones are:

o NextFlow: dataflow “top-down” approach, implemented in Groovy (Java)

o Snakemake: make-like “bottom-up” approach resolving dependencies, implemented in Python

Workflow management systems

e Purpose : implement reproducible, portable, and scalable data analyses

e Two “parts”:

o Workflow definition language = implement the workflow

o Workflow execution system = run the workflow in variable environments

e Multiple systems exist. Most popular ones are:

o NextFlow: dataflow “top-down” approach, implemented in Groovy (Java)

o |Snakemake: make-like “bottom-up” approach resolving dependencies, implemented in Python

Overview of Snakemake’s features

User-friendly language: superset of Python
Can be easily executed on local machines, HPCs, and clouds
Handles dependencies with Conda (package manager)

With Snakemake and conda installed, you can:
o Download a workflow (e.g. from a Github or Gitlab repository)
o Run Snakemake
o Automatically reproduce all the results

Structure of this workshop

Short lecture (~30 min), then focus on practice

Exercises are loosely based on the official tutorial: genomics workflow
You will implement exercises on your local computer

All the information is on the workshop’s wiki

Reference implementation for all exercises is in the Github repository

Questions are welcome anytime!

Basic concepts

Basic concepts

Workflow structure

Defining simple rules

Workflow execution for simple rules
Multiple inputs/outputs

Rules dependencies

Wildcards

Workflow execution

The "expand" syntax

Non-file rule parameters

Executing Python / R code

10

e \Workflow structure

Basic concepts

11

Workflow structure

Workflow:

(@)

Collection of interdependent rules to generate specific

outputs

Rule:

(@)
(@)
(@)

@)

Job:

(@)

@)

Basic workflow unit
Template (recipe) to produce an output (1 or more files)
Can use an input

Generates jobs when executed

Single execution of a rule (apply the recipe to specific data)

Successful if all outputs are present and no error

Input 1

'

Rule 1

l

Output 1

N

Rule 2 Rule 3
Output 2 Output 3

12

Workflow definition

Workflow structure

workflow_dir/
L Snakefile

Rules are defined in a file called Snakefile

Snakefile is located at the root of the workflow directory
Paths in Snakefile are relative to the directory containing Snakefile

13

rule:-first step:
input:
‘data/first step.tsv'
output:
‘Fesults/Tirst step.txt’
shell:
‘cp-{input}-{output}’

rule-second step:
input:
‘Fesults/Tirst step.txt'
output:
‘results/second step.txt'
shell:
‘cat:- {input}:|-grep:“snakemake” :->- {output}"’

Workflow structure

Workflow definition

workflow_dir/
e Rules are defined in a file called Snakefile L Snakefile

e Snakefile is located at the root of the workflow directory
e Paths in Snakefile are relative to the directory containing Snakefile

Workflow execution

e Command “snakemake --cores 1 <output>” executed from the workflow
directory

e Read the rules defined in Snakefile

e Computes all jobs necessary to generate <output>

Defining simple rules

Basic concepts

16

- Keyword
Rule name

Defining simple rules

- File
- Shell command

Rule:

rule first_step:
e Defined with the keyword rule :

: 'results/first_step.txt'
e User-defined name ,

e Comprised of several ‘echo "snakemake® > {output}’

17

Defining simple rules

Rule:

e Defined with the keyword rule
e User-defined name
e Comprised of several

e Directives have values:

o Instruction (commands)
o File names

o Numeric values...

- Keyword
Rule name

- File
- Shell command

rule first_step:
'results/first_step.txt'

‘echo "snakemake" > {output}'

Here, the value is an instruction:
“‘How to generate the output ?”

18

- Keyword
Rule name

Defining simple rules

- File
- Shell command

Once defined, values can be

: rule first_step:
accessed in the shell _ >

o Here, we use the value of “ 'results/first_step.txt'

‘echo "snakemake" > {output}'

If part of a path does not exist, it will T

be created automatically

o Here, the “results” directory is created Value from the
‘output’

19

- Keyword

Defining simple rules - Rule name

Adding directives

Most rules use an input
If the input file doesn't exist, jobs

cannot be executed

- File
- Shell command

rule first_step:
‘data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}’

Value from Value from

'input’ ‘output’
20

Basic concepts

Workflow execution for simple rules

21

Executing workflows

Snakefile

rule first_step:
‘data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

22

Executing workflows

Snakefile

rule first_step:
'data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

snakemake --cores 1 <output>

23

Executing workflows

Snakefile

rule first_step:
'data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

snakemake --cores 1 results/first_step.txt

24

Executin

Snakefile

g workflows

rule first_step:

'data/first_step.tsv'

'results/first_step.txt'<‘k\\\\

‘cp {input} {output}'

snakemake --cores 1 results/first_step.txt

\ Target = output that you want to generate

25

Executing workflows

Snakefile

rule first_step:
'data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

snakemake --cores 1 results/first_step.txt

This command will generate a job
= application of the rule first_step

26

Executing workflows

Snakefile

rule first_step:
‘data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

Before execution:

workflow dir/
— data/

(-

L first step.tsv
Snakefile

27

Executing workflows

Snakefile

rule first_step:
'data/first_step.tsv'
'results/first_step.txt'

‘cp {input} {output}'

snakemake --cores 1 results/first_step.txt

Before execution:

workflow dir/
— data/

(-

L first step.tsv
Snakefile

28

Executing workflows

Before execution:

workflow dir/

Snakefil
nakeflle |— data/

: L Snakefile
'data/first_step.tsv'

'results/first_step.txt' After execution:
‘cp {input} {output}’ workflow dir/
— data

L first step.tsv

snakemake --cores 1 results/first_step.txt —

—— Snakefile 29

Multiple inputs/outputs

Basic concepts

30

Multiple inputs

Rules can use more than one input

Don’t forget the comma!

rule first_step:

‘data/first_step_T .tsv'D
‘data/first_step_2.tsv'

'results/first_step.txt'

‘cat {input} > {output}’

31

Multiple inputs

Input values
are concatenated

Rules can use more than one input rule first_step:

'data/first_step_1.tsv{]
Don’t forget the commal! AR SR E

'results/first_step.txt'

‘cat {input} > {output}’

cat data/first_step_1.tsv data/first_step_2.tsv > results/first_step.txt

32

Multiple inputs

Rules can use more than one input

Don'’t forget the comma!

Inputs can be accessed by their

positional index: input[n]

rule first_step:

‘data/first_step_T .tsv'D
‘data/first_step_2.tsv'

'results/first_step.txt'

'éat {input[@]} > {output);]

//}'”cat {input[1]} >> {output}"

/

Commands are
concatenated

33

Multiple inputs

Rules can use more than one input

Don'’t forget the comma!

Inputs can be accessed by their

positional index: input[n]

rule first_step:

‘data/first_step_T .tsv'D
‘data/first_step_2.tsv'

'results/first_step.txt'

cat {input[0©]} > {output}
cat {input[1]} >> {output}

34

Multiple inputs

Inputs can be named for clarity

Named input can be accessed by

their names:

input.input_name

rule first_step:

‘data/first_step_1.tsv',
‘data/first_step_2.tsv'

input_1
input_2

'results/first_step.txt'

‘cat {input.input_1} > {output};'
‘cat {input.input_2} >> {output}'

35

Multiple outputs

Outputs work just like inputs

Multiple output separated by °,
Outputs can be named

Can be accessed by positional
index or by name

All output need to be generated
or the job will fail

rule first_step:

input_1

= 'data/first_step_1.tsv',
input_2 = 'data/first_step_2.tsv'
output_1 = 'results/first_step_1.txt',
= 'results/first_step_2.txt'

output_2

‘cat {input.input_1} > {output.output_1};'
‘cat {input.input_2} >> {output.output_2}'

snakemake --cores 1 results/first_step_1.txt

L results/first_step 1.txt, results/first_step 2.txt 3

Rules dependencies

Basic concepts

37

Rules dependencies

rule first_step:
'data/first_step.tsv'
'résults/first_step.txt'
'ép {input} {output}’

rule second_step:
';esults/first_step.txt'
'résults/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

Rules dependencies

snakemake --cores 1 results/second_step.txt
rule first_step:

'&ata/first_step.tsv'

'résults/first_step.txt'

'ép {input} {output}’
rule second_step:

'results/first_step.txt’

'results/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

39

Rules dependencies

snakemake --cores 1 results/second_step.txt
rule first_step:

'data/first_step.tsv' - Does the input of rule second_step
: exist ?
'‘results/first_step.txt' ---> NO

‘cp {input} {output}'

rule second_step:

'results/first_step.txt’
'results/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

40

Rules dependencies

rule first_step:

‘data/first_step.tsv'

'results/first_step.txt'

'ép {input} {output}’
rule second_step:

';esults/first_step.txt'

'résults/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

snakemake --cores 1 results/second_step.txt

Does the input of rule second_step
exist ?
---> NO

Look for a rule generating that input
--->rule first_step

41

Rules dependencies

snakemake --cores 1 results/second_step.txt

- Does the input of rule second_step

rule first_step:

‘data/first_step.tsv'

: exist ?
'‘results/first_step.txt' ---> NO
‘cp {input} {output}’ - Look for a rule generating that input

--->rule first_step

rule second_step:
s - Does the input of rule first_step

'results/first_step.txt' exist?

: ---> YES
'results/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

42

Rules dependencies

snakemake --cores 1 results/second_step.txt

- Does the input of rule second_step

rule first_step:

‘data/first_step.tsv'

: exist ?
'‘results/first_step.txt' ---> NO
‘cp {input} {output}’ - Look for a rule generating that input

--->rule first_step

rule second_step:
s - Does the input of rule first_step

'results/first_step.txt' exist?

: ---> YES

'results/second_step.txt'

. - All good, execute the workflow
‘cat {input} | grep “snakemake” > {output}'

43

Rules dependencies

rule first_step:
‘data/first_step.tsv'

'results/first_step.txt'

‘cp {input} {output}’ Dependency between
rule second_step and
rule second_step: rule first_step.

'results/first_step.txt'

'results/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

Rules dependencies

rule first_step:
'&ata/first_step.tsv'
'résults/first_step.txt'
'ép {input} {output}’

rule second_step:
';esults/first_step.txt'
'résults/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

Core concept of
Snakemake: resolving
input/output
dependencies

For each job: determine if
input exists, otherwise
look for rule that
generates it

Snakemake computes a
Directed Acyclic Graph
(DAG) resolving all

dependencies 45

Wildcards

Basic concepts

46

Wildcards: Snakemake "variables"

“Hardcoded” input and output files

rule first_step:
‘data/first_step.tsv'

'results/first_step.txt'

‘cp {input} {output}'

47

Wildcards: Snakemake "variables"

“Hardcoded” input and output files

“General” input and output files with wildcards

rule first_step:

‘data/first_step.tsv'

'results/first_step.txt'

‘cp {input} {output}'

rule first_step:
‘data/{sample}.tsv'
'results/{sample}.txt’

‘cp {input} {output}'

48

Wildcards: inferred from output

rule first_step:

'data/ .tsv' Wildcards are “resolved” from the output

results/ ext! and propagated to other directives

‘cp {input} {output}'

Snakemake interpretation:
snakemake --cores 1 results/first_step.txt [N)
{sample} = "first_step"

49

Wildcards in workflows

e A workflow can use multiple wildcards

e Asingle rule can use multiple
(different) wildcards

rule first_step:

‘data/{sample}_{treatment}.tsv'

‘echo {wildcards.sample};"

///4'cp {input} {output}'

'results/{sample}_{treatment}.txt'

/

Wildcard values can be
accessed in ‘shell’

50

Wildcards in workflows

A workflow can use multiple wildcards

A single rule can use multiple
(different) wildcards

Input and output files do not have to
share the same wildcards

snakemake --cores 1 results/sample1_control.txt —>

rule first_step:
‘data/ .tsv'

'results/

‘echo {wildcards.sample};"

‘cp {input} {output}’

txt!

Input: data/sample1.tsv

51

Wildcards in workflows

snakemake --cores 1 results/samplel_control.txt

e All files generated by a rule need to Output:

have the same wildcards! - results/sample1_control.txt
- results/sample1_info.txt

rule first_step: snakemake --cores 1 results/samplel_1day.txt
‘d?ta/ .tsv' Output:
o , - results/sample1_1day.txt
results/ .txt', —.
results/ info . txt' - results/sample1_info.txt
'echo {wildcards.sample} > {output[0]};’ snakemake --cores 1 results/samplel_info.txt

‘cat {input} > {output[1]}'

Output: ?9??7?7?°?

52

Wildcards in workflows

A workflow can use multiple wildcards

A single rule can use multiple
(different) wildcards

Input and output files do not have to
share the same wildcards

All files generated by a rule need to
have the same wildcards!

rule first_step:
‘data/{sample}_{treatment}.tsv'
'results/{sample}_{treatment}.txt'

‘echo {wildcards.sample};"
‘cp {input} {output}’

Two different jobs cannot generate the same output

53

Workflow execution

Basic concepts

54

Execution

e Specify a target

snakemake --cores 1 results/second_step.txt

rule first_step:
'éata/first_step.tsv'
'résults/first_step.txt'
'ép {input} {output}’

rule second_step:
';esults/first_step.txt'
'résults/second_step.txt'

‘cat {input} | grep “snakemake”

> {output}'

55

Execution

e Specify a target

snakemake --cores 1 results/second_step.txt

e Without target: snakemake will use
the output of the first rule found in
the Snakefile as a target

snakemake --cores 1

snakemake --cores 1 results/first_step.txt

rule first_step:
'éata/first_step.tsv'
'résults/first_step.txt'
'ép {input} {output}’
rule second_step:

'results/first_step.txt'

'results/second_step.txt'

‘cat {input} | grep “snakemake” > {output}'

56

Execution

e Specify a target

snakemake --cores 1 results/second_step.txt

e Without target: snakemake will use
the output of the first rule found in
the Snakefile as a target

snakemake --cores 1

snakemake --cores 1 results/first_step.txt

—s first rule cannot have wildcards
(impossible to resolve)

rule first_step:
‘data/ .tsv'
‘results/ CExt’

‘cp {input} {output}'

57

Execution

By default, existing outputs are not generated again if input is unchanged

snakemake --cores 1 --force <target> / --forceall

Dry-run: see what snakemake would do, without actually doing it

snakemake --cores 1 --dry-run <target> . .

Visualize the DAG:

snakemake --cores 1 --dag <target> | dot -Tpng > dag.png

58

The "expand" syntax

Basic concepts

59

The “expand” syntax

rule first_step:

‘data/A.tsv’,
‘data/B.tsv’,
‘data/C.tsv’,
‘data/D.tsv’

'results/first_step.txt'

‘cat {input} {output}’

60

The “expand” syntax

rule first_step:
‘data/A.tsv’,
‘data/B.tsv’,
‘data/C.tsv’,
‘data/D.tsv’
'results/first_step.txt'

‘cat {input} {output}’

rule first_step:
expand(‘data/{sample}.tsv’, sample=[‘A, ‘B’,‘C’,'D’'])
'results/first_step.txt'

‘cat {input} {output}’

61

The “expand” syntax

samples = [‘A’, ‘B’]
replicates = [1, 2]

rule first_step:
expand(‘data/{sample}_{replicate}.tsv’, sample=samples, replicate=replicates)
'results/first_step.txt'

‘cat {input} {output}’

62

The “expand” syntax

samples = [‘A’, ‘B’]
replicates = [1, 2]

rule first_step:
expand(‘data/{sample}_{replicate}.tsv’, sample=samples, replicate=replicates)
'results/first_step.txt'

‘cat {input} {output}’

data/A_1.tsv]]
data/A 2.tsv — Expands a wildcard expression

» data/B_1.tsv to a series of wildcard values.
data/B_2.tsv

63

The “expand” syntax

The wildcards defined in expand are

INDEPENDENT from any other wildcard in the rule

samples = [‘A’, ‘B’]
replicates = [1, 2]

rule first_step:
expand(‘data/ _

'results/first_step.txt'

‘cat {input} {output}’

.tsv’

l

sample=samples,

replicate=replicates)

64

The “expand” syntax

The wildcards defined in expand are
INDEPENDENT from any other wildcard in the rule

samples = [‘A’, ‘B’]
replicates = (1, 2)
rule first_step:

expand(‘data/

'results/ .txt!

.tsv’, sample=samples, replicate=replicates)

' <;at {input} {output }\

In this case, the value of the {sample} wildcard
will NOT be propagated to the input

65

Non-file rule parameters

Basic concepts

66

Non-file rule parameters

rule first_step:
'data/first_step.tsv'
'results/first_step.txt'

‘head -n 5 {input} > {output}’

‘ Stuck with only the first 5 lines of the input

67

Non-file rule parameters

rule first_step:
'data/first_step.tsv'

'results/first_step.txt'’

5

‘head -n {params} {input} > {output}’

Directive

68

Non-file rule parameters

rule first_step:

'data/first_step.tsv'

'results/first_step.txt'’

5

"head

-n {params}

{input} > {output}'

e Directive

e Accessible in shell

69

Non-file rule parameters

rule first_step: Direct
: [Irective

‘data/first_step.tsv'
: e Accessible in shell
'results/first_step.txt'
e Parameters can be
named (and they should)

n_lines =5

'head -n {params.n_lines} {input} > {output}’

70

Executing Python / R code

Basic concepts

71

The 'run' directive

rule first_step:
'&ata/first_step.tsv'
'résults/first_step.txt'
liAes =5
.input_file = open(input[0])
output_file = open(output[0],

for i in range(params.lines):
output_file.write(input_file.readline())

i

w')

Execute Python code directly
from a Snakefile with run

Replaces shell

72

The 'run' directive

rule first_step:
‘data/first_step.tsv'
'results/first_step.txt'

lines = 5

input_file = oper{(input[@])
output_file = open[output[B8]] ‘w")
for i in range[params.lines)|:

output_file.write(input_file.readline())

Execute Python code directly
from a Snakefile with run

Replaces shell

Directive values can be accessed
like in shell

73

The 'script' directive

Snakefile

rule first_step:
'éata/first_step.tsv'
'résults/first_step.txt'
1iﬁes =5

‘first_step.py'

first_step.py

Retrieve information from Snakemake
input_file = open(snakemake.input[0])
output_file = open(snakemake.output[0], 'w')
n_lines = snakemake.params.lines

Process file
for i in range(n_lines):
output_file.write(input_file.readline())

Call an external Python script
from Snakemake with script

Directives and values can be
accessed from a snakemake
Python object

74

Snakefile

The 'script' directive

rule first_step:
'éata/first_step.tsv'
'résults/first_step.txt'
1iﬁes =5

‘first_step.R'

first_step.R

library(readr)

Retrieve information from Snakemake
input_file_path <- snakemake@input[[1]]
output_file_path <- snakemake@output[[1]]
n_lines <- snakemake@params$lines[1]

Open input file
data <- read_delim(input_file_path, "\t'

, h_max = n_lines)

Call an external Python script
from Snakemake

Directives and values can be
accessed from a snakemake

Python object

Other supported languages:

o R
o Julia
o Rust

75

Basic concepts

Workflow structure

Defining simple rules

Workflow execution for simple rules
Multiple inputs/outputs

Rules dependencies

Wildcards

Workflow execution

The "expand” syntax

Non-file rule parameters

Executing Python code

Hands on !
Exercises series 1

Hands on - Exercises

= Q ThibaultLatrille / workshop-snakemake-unil2023

<> Code I Pullrequests () Actions [Projects

@ workshop-snakemake-unil2023

forked from

= master ~ ¥ 1branch © 0 tags

This branch is of RomainFeron:master.

@ ThibaultLatrille Update workshop.yaml

docs
solutions
workflow
.gitignore
LICENSE

README.md

[0 wiki | @ Security |~ Insights

& Watch 0 ~

Go to file Add file ~ <> Code ~ About

Repository for the workshop
"Introduction to Snakemake"

Hands on - Exercises series

= O ThibaultLatrille / workshop-snakemake-unil2023

<> Code 7 Pullrequests (» Actions [Projects [Wiki) Security [~ Insights

Home Edit | New page

T | atrille edited thie nace A4 dave aan
Latrille edited this page 4 days ago -

Welcome to the official wiki for the workshop Introduction to Snakemake for reproducible ey
analyses.

In this wiki, you will find all the information presented during the workshop, sometimes with
additional details and references to the official Snakemake's documentation. You will also find
detailed information about the exercises for each section, as well as hints for the difficult parts. Basic concepts

All information in the current version of this wiki is based on the for
Snakemake version 7.8.1 .

Direct links to exercises:

Advanced concepts

Advanced concepts

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Specifying parameters with a config file

config.yaml

lines_number:
samples:
- samplel
- sample2
resources:
threads: 4
memory: 4G

5

Snakefile

configfile: 'config.yaml’

rule first_step:
‘data/first_step.tsv'
'results/first_step.txt'

lines = config[‘lines_number’]

‘head -n {params.lines} {input} > {output}’

82

Specifying parameters with a config file

Read information from a config file :
o “snakemake --configfile <filename>"
o “configfile: <filename>" at the top of Snakefile

Config files are in YAML format
The config file is parsed into dictionary

Lists of parameters become list (e.g. ‘samples’),

lines_number:
samples:
- samplel
- sample2
resources:
threads: 4
memory: 4G

5

Lists of named parameters become dictionaries (e.g. ‘resources’)

83

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Advanced directives
threads

Number of threads to allocate to each job:

rule first_step:
‘data/first_step.tsv'’

'results/first_step.txt'
4

‘command --threads {threads} {input} > {output}’

The total number of threads is given at runtime, e. g. “snakemake --cores 12”

85

Advanced directives
log

The ‘log’ directive specifies the path to a log file for a rule.

rule first_step:
‘data/first_step.tsv'
'results/first_step.txt'

'logs/first_step.log'

‘command {input} > {output} 2> {log}'

Snakemake automatically creates the directory in the log file path.

86

Advanced directives
benchmark

The ‘benchmark’ directive specifies the path to a benchmark results file for a rule.

rule first_step:
'éata/first_step.tsv'
'résults/first_step.txt'
'bencharks/first_step.txt'

‘command {input} > {output}’

Measure runtime and memory usage for the rule and save it to the file.

87

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Using functions as input / output for rules

def first_step_input(wildcards):
sample = wildcards.sample
if sample == 'samplel':
return 'data/datal.txt’
else:
return 'data/data2.txt’

rule first_step:
first_step_input

'results/{sample}.txt’

‘cp {input} {output}’

89

Using functions as input / output for rules

Situation : input files depend on wildcards in a non-trivial way

Input functions are Python functions that take “wildcards” as single argument and
return a file or list of files. Can be a lambda expression

Define function above the rule, then use syntax “input : <function_name>"
Functions are evaluated before executing the workflow = can’t list output files !

Functions can return a dictionary with input names as keys.
Use “input : unpack(<function_name>) to obtain named inputs

90

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Modularization : subfiles

e Rules in different snakefiles and use “include” in main Snakefile

‘cp {input} {output}’

'results/first_step.txt'

rule all

first_step.smk Snakefile
rule first_step: include: 'first_step.smk'
'results/first_step.txt' :

'results/first_step.txt'

92

Modularization : modules

e Modules : import rules explicitly from another Snakefile.

my_workflow/Snakefile

Snakefile

rule first_step:
‘data/first_step.txt’
'results/first_step.txt'

‘cp {input} {output}’

module other_workflow:
'my_workflow/Snakefile'
use rule * from other_workflow

rule all:

'results/first_step.txt'

93

Modularization: official wrappers

e \Wrappers are scripts that integrate popular software with Snakemake.

e Available for popular tools in the official repository (community-based effort)

rule run_tool_wrapper:
‘data/input.tsv’

'results/output.txt’

'0.40.2/bio/tool’ — |

Instructions for each
tool are in the official
repository: parameter
names, inputs and
outputs ...

94

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Automatic deployment of software with Conda

Conda: open-source package and environment manager (Windows, macOS, linux)

Channels: repository of software, packaged and maintained
o Conda-forge: lots of general software, often used
o Bioconda: specifically for bioinformatics software

Environments can be defined in YAML files

Great tool to manage software in general

workshop.yaml

name: snakemake-workshop
channels:

- conda-forge

- bioconda
dependencies:

- python=3.6.8

- snakemake=6.9.1

- graphviz=2.38.0

- bcftools=1.9

- samtools=1.9

- bwa=0.7.17

96

Automatic deployment of software with Conda

Snakemake provides Conda integration: automatically deploy a conda environment
for a rule.

Directive “conda”, value is the relative path to the environment file:
<path/to/environment.yam|>"

Execution parameter “--use-conda”

97

Automatic deployment of software with Conda

rule first_step:

'results/genome.fa’

'results/genome.fai’

‘envs/indexing.yaml’

'samtools index {input}'

name: indexing
channels:

- conda-forge

- bioconda
dependencies:

- samtools=1.13

workflow_dir/
—— results/
L genome.fa
—— envs/
L— indexing.yaml
L Snakefile

snakemake --cores 1 --use-conda results/genome.fai

98

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Running snakemake on clusters

Snakemake can make use of a scheduler (e.g. slurm) to execute jobs on a cluster
without changes to the rules (almost true)

Syntax : “snakemake --cluster <submit_command>" (e.qg. sbatch)

Advanced syntax : command can take job information from rule definition

NELGUELG --cluster “sbatch --cpus-per-task={threads}”

Specify the maximum number of jobs to submit with “-j / --jobs”

100

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

Data-dependent conditional execution

e Situation : rule has variable or unpredictable output (e.g. clustering...)
e Solution: checkpoints = DAG is re-evaluated when output is required

e Syntax : “checkpoint” instead of “rule”, then input function with :

checkpoints.<checkpoint name>.get (**wildcards) .output

102

Data-dependent conditional execution

checkpoint variable_output_rule:
'&ata/{sample}.txt'
diéectory('results/{sample}')
#.Split input in files of length 1000 lines starting
with the prefix {output}/

"split {input} {output}/'

def collect input (wildcards) :
checkpoint = checkpoints.variable_output_rule.get (**wildcards) .output[0]
full output = expand(' results/{sample}/{i}.txt', sample=wildcards.sample,
i=glob wildcards (os.path.join (checkpoint, '{i}.txt')).i)
return full output

rule aggregate:
collect_input
"results/{sample}.txt'

‘cat {input} > {output}’

Variable
output
rule

Input
function

Rule using
checkpoint
output

103

Advanced concepts

Config files

Advanced directives

Functions as input and output for rules
Modularization

Automatic software deployment with Conda

Running snakemake on clusters (no exercises)
Data-dependent conditional execution (no exercises)
Workflow organization guidelines

How to organize your workflow : best practices

A repository should contain a single workflow

Use Conda environments when possible

Break out large workflow into modules with extension “.smk”
Specify parameters in a config file located in a ‘config’ folder

If you have many samples with information, use a sample sheet located in the
‘config’ folder

105

config

— config.yaml

—— samples.tsv
LICENSE

README . md

resources

— calling model.txt
workflow

—— envs

— first task.yaml
—— second task.yaml
—— rules

— first task.smk
—— second_ task.smk
—— scripts

— do something.py
—— Snakefile

Configuration files (modified by the user)

External files provided with the workflow

\

Conda environment files

Actual workflow

Snakemake modules (rules) implementation

Python / R scripts

106

config

— config.yaml
—— samples.tsv
data

LICENSE
README . md
resources
L calling model.txt
workflow
—— envs
— first task.yaml
— second task.yaml
—— rules
— first task.smk
—— second task.smk
—— scripts

L do something.py
—— Snakefile

107

config

— config.yaml
—— samples.tsv
data

LICENSE
README . md
resources
L calling model.txt
workflow
—— envs
— first task.yaml
— second task.yaml
—— rules
— first task.smk
—— second task.smk
—— scripts

L— do something.py
—— Snakefile

benchmarks

— sample 1.txt
— sample 2.txt
config

—— config.yaml

-— samples.tsv

data

LICENSE

logs

P—-sampleil.txt

I——-sample72.txt

README . md

resources

I——-calling_model.txt

results

— sample 1.bam

— sample 2.bam

— variants.vcf

workflow

— envs
F—-first_task.yaml
I——-Second_task.yaml

—— rules
F—-first_task.smk
I——-second_task.smk

—— scripts
I——-do_something.py

L— Snakefile

8

8

Benchmarks

Log files

Final results files

108

Concluding remarks

Reproducibility :
o Workflow = steps clearly defined, commands saved
o Conda integration = perfect handling of software installation and versions
o Self-contained workflow archive = other people can easily reproduce your analyses (with almost no
programming knowledge)

Practical use :

o Once workflow is build, can be applied to any number of samples

o Snakemake does a lot for you !
m Create directory structure
m Check job completion, restart if needed
m Fully handles parallelization of jobs
m Easy handling of logs and benchmarks

o Portability and scalability : run on the cloud, on HPCs, and on any UNIX machine

o Beautiful DAG in one command, no more powerpoint ! 100

Supp. Mat.

Special output types

Outputs can be “decorated” with specific properties
Temporary : “temp(‘path/toffile.txt’)” = deleted when not required by future jobs
Protected : “protected(‘path/to/file.txt’)” = cannot be overwritten after job ends

Ancient : “ancient(‘path/toffile.txt’)” = file will not be re-created when running the
pipeline

Directory : “directory(‘path/to/directory’)” = the output is a directory instead of a file
(try to avoid that)

111

Working with remote inputs

e Snakemake implements remote file access for many protocols

e |Idea:
o Import module for the remote access protocol
o Initiate remote provider instance in the snakefile’s body
o Access remote files within a rule

112

Working with remote inputs

Snakemake implements remote file access for many protocols

ldea :

o Import module for the remote access protocol
o Initiate remote provider instance in the snakefile’s body
o Access remote files within a rule

Files are downloaded to a sub-dir of the
current working directory

List of available remote protocols :

Amazon Storage Service (AWS S3)
Google Cloud Storage (GS)
Microsoft Azure Storage

SFTP

HTTP(S)

FTP

Dropbox

GenBank / NCBI Entrez

113

Execution profiles

Execution profiles are like presets of runtime parameter values (‘-j <N>’,
‘--use-conda’ ...)

Profile = directory ~/.config/snakemake/<profile_name>/ (on Linux). Minimum :
config.yaml with syntax <runtime_option>: <value>

Profiles can be extended a lot, especially for HPC environments: scripts to submit
jobs and check job status = advanced customization

Collection of official profiles on Github. Custom profile for Slurm developed by us

114

