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In humans and many other species, recombination events cluster in narrow

and short-lived hot spots distributed across the genome, whose location is

determined by the Zn-finger protein PRDM9. To explain these fast evolution-

ary dynamics, an intra-genomic Red Queen model has been proposed, based

on the interplay between two antagonistic forces: biased gene conversion,

mediated by double-strand breaks, resulting in hot-spot extinction, followed

by positive selection favouring new PRDM9 alleles recognizing new sequence

motifs. Thus far, however, this Red Queen model has not been formalized as a

quantitative population-genetic model, fully accounting for the intricate inter-

play between biased gene conversion, mutation, selection, demography and

genetic diversity at the PRDM9 locus. Here, we explore the population genetics

of the Red Queen model of recombination. A Wright–Fisher simulator was

implemented, allowing exploration of the behaviour of the model (mean equi-

librium recombination rate, diversity at the PRDM9 locus or turnover rate) as a

function of the parameters (effective population size, mutation and erosion

rates). In a second step, analytical results based on self-consistent mean-field

approximations were derived, reproducing the scaling relations observed

in the simulations. Empirical fit of the model to current data from the mouse

suggests both a high mutation rate at PRDM9 and strong biased gene

conversion on its targets.

This article is part of the themed issue ‘Evolutionary causes and

consequences of recombination rate variation in sexual organisms’.
1. Introduction
In mammals, as in many other species, meiotic recombination events are

not uniformly distributed along chromosomes. Instead, they tend to occur

within narrow regions, called hot spots, of a typical length of 1–2 kb [1–4].

Between 20 000 and 40 000 hot spots have been identified in humans [2,3], and

over 40 000 in the mouse [4]. Strikingly, hot spots are not conserved between

humans and chimps [5–7], nor between mouse subspecies [8], suggesting that

recombination landscapes are highly dynamic.

At least in humans and the mouse, the location of hot spots is primarily deter-

mined by the Zn-finger protein PRDM9. Upon binding DNA at specific sequence

motifs of approximately 10–20 bp through its Zn-finger domain [9–11], PRDM9

triggers the formation of a double-strand break (DSB) in the immediate vicinity of

the target site [12]. This DSB is repaired, ultimately leading to a crossover (CO) or

a non-crossover (NCO) recombination event. In both cases, the DNA sequence

around (and including) the binding site of PRDM9 is resected from the chromo-

some and is repaired using the homologous chromosome as a template, over

approximately 300–1000 base pairs—a process called gene conversion.

When the two chromosomes differ due to the presence of heterozygous sites, an

event of gene conversion leads to a loss of information (loss of the allele carried by

the broken chromosome). As a result, gene conversion has the following
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paradoxical consequence: if one of the chromosomes has a ver-

sion of the binding site that partially or completely inactivates

the binding of PRDM9 (cold allele), while the sequence on

the other chromosome corresponds to a fully functional (hot)

allele, then PRDM9 will preferentially target the chromosome

carrying the hot allele—whose sequence will then be erased

and converted into the cold version present on the homologue

[13,14]. This process of DSB-induced biased gene conversion

(biased in favour of cold alleles) will hereafter be referred to as

dBGC. At the level of the population, dBGC results in a progress-

ive accumulation of inactive PRDM9 target sites, by mutation

and preferential transmission of the mutants, leading to an

increase in frequency and the ultimate fixation of inactive hot

spots genome-wide. Hence, through the action of dBGC, recom-

bination hot spots turn out to be self-destructive, a phenomenon

referred to as the hot-spot conversion paradox [15].

Population-genetic arguments suggest that dBGC might

be a sufficient force to lead to the rapid extinction of recombi-

nation hot spots over the genome [14–16], thus raising the

question of how recombination is maintained in the long run.

A remarkable observation in this respect is that PRDM9 is

the most rapidly evolving gene in primates and rodents, and

more generally across metazoans [17–19], suggesting that the

ZnFn domain of PRDM9 is subject to strong mutational and

selective pressure, favouring new alleles targeting new sets of

hot spots across the genome [20]. Thus, the interplay between

dBGC, leading to the loss of current hot spots, and mutation

and positive selection at the PRDM9 locus, leading to the

recruitment of new hot spots, appear to provide a convinc-

ing model for explaining the rapid evolutionary turnover of

recombination landscapes [10,21,22]. It is an instance of an

intra-genomic conflict, where two processes are chasing after

one another. As such, it is analogous to Red Queen situations,

such as arms races between hosts and pathogens, often

encountered in evolutionary ecology.

Several observations are consistent with the predictions of

the Red Queen model of recombination turnover. First, the

analysis of transmission segregation by sperm-typing at a

few loci demonstrated that some recombination hot spots

are subject to dBGC in humans and mice [13,23,24]. Second,

comparative genome analyses have suggested that PRDM9

target motifs accumulate substitutions at an accelerated rate

genome-wide [10,22,25,26]. Given that recombination is

required for the proper segregation of chromosomes, and

that PRDM9 knockout mice are sterile [27], it seems plausible

that the loss of recombination hot spots might affect fertility,

thus inducing positive selection on PRDM9 for eliciting new

sequence motifs. Theoretical models indeed suggest that

Red Queen dynamics could in principle explain the turnover

of recombination landscapes in the context of dBGC [21].

In many respects, however, the Red Queen model is still

speculative and needs to be further theoretically investigated

and empirically tested. A first specific issue is how exactly posi-

tive selection is leveraged onto PRDM9 by hot-spot extinction.

Second, a more accurate picture of the Red Queen model

should really integrate the role of genetic diversity. Thus far,

the Red Queen has been stated mostly in terms of a succes-

sion—global hot-spot extinction by dBGC followed by allelic

replacement at the PRDM9 locus. However, in reality, the

PRDM9 locus is known to be highly polymorphic, with

many alternative alleles, each targeting a different subset of

hot spots [17–19,25,26]. Whether the primary driver of such

high levels of polymorphism is selection or mutation is not
yet totally clear. The Zn-finger domain of PRDM9 has a minis-

atellite structure, and as a result, the entire domain follows a

complex process of point mutation and concerted evolution

by unequal meiotic CO. This appears to result in a particularly

high mutation rate, up to 1025 per generation [28], sufficient in

itself to promote high levels of standing variation. The role of

positive selection on PRDM9, on the other hand, and in par-

ticular, whether this selection is diversifying, is currently

much less clear.

Whatever the primary cause of such high levels of poly-

morphism, the presence of multiple alleles at the PRDM9

locus in a population should distribute recombination rates

more evenly across a larger number of weaker hot spots

genome-wide, thereby weakening the effect of dBGC and

thus slowing down extinction of old hot spots. Thus, there

are potentially non-trivial feedbacks between standing

diversity and other aspects of the stationary regime of the

Red Queen process, in which demography is expected to play

an important role. A question of particular interest in this con-

text is how the stationary regime of the Red Queen (in terms of

the mean levels of depletion of recombination rates, the equili-

brium diversity at the PRDM9 locus and the rate of turnover of

recombination landscapes) scales with population size and

with the parameters of the genetic system (in particular, the

mutation rates at the target sites and at the minisatellite locus

encoding the Zn-finger domain of PRDM9).

Based on current empirical evidence, both dBGC and

PRDM9 are likely to be implicated in the evolutionary

dynamics of recombination landscapes across placental mam-

mals, with the notable exception of the dog lineage [29]. On a

broader scale, PRDM9 is present across the metazoan tree of

life, although absent in birds [30] and in some other specific

lineages. Across mammals, and even more so across metazo-

ans, both mutation rates and effective population size are

likely to vary over several orders of magnitude. Thus, if the

Red Queen is to provide a model of the evolutionary dynamics

of recombination, not just in humans and in the mouse, but

more globally across mammals or metazoans, it is fundamen-

tal to better understand how the working regime of this model

effectively scales as a function of its parameters.

With this in mind, here, we introduce a simple population-

genetic model of the Red Queen of recombination turnover.

The model was first implemented as a simulation program

and run over a broad range of conditions, so as to explore its

qualitative behaviour, as well as its scaling, as a function of

the parameters. These simulation experiments were then

backed up by analytical and numerical approximations,

based on a self-consistent mean-field argument, which are

meant to capture the main properties of the stationary

regime of the process. Based on this analysis, we provide a

general overview of the behaviour of the Red Queen model

in different parameter regimes. Finally, an empirical calibration

of the model against currently available data in the mouse was

attempted, which suggests both a high mutation rate at

PRDM9 and strong biased gene conversion on its targets.
2. Material and methods
(a) Population-genetic model
The evolutionary dynamics of the Red Queen was formalized as a

Wright–Fisher model with mutation and selection. The popu-

lation is assumed to be panmictic, with constant size Ne and
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with non-overlapping generations. Only the genetic composition

of the PRMD9 locus was explicitly modelled, the evolutionary

dynamics at other loci (PRDM9 targets across the genome)

being implicit.

(i) Mutation
The locus PRDM9 mutates at constant rate u per generation. Each

mutation produces a new functional PRDM9 variant, endowed

with an entirely new set of targets sites across the genome,

all of which are assumed to recombine at the same rate. The

number of targets is the same for each allele, and there is no over-

lap between the targets of distinct PRDM9 alleles. Here, we will

not explicitly define the total number of targets nor the absolute

recombination rate induced by each target, since the model turns

out to be independent of those two quantities.

The rate u should be understood as a functional mutation

rate (discounting loss-of-function mutants). At each generation,

Kt denotes the number of PRDM9 alleles in the population, and

8i [ f1, . . ., Ktg, ni,t is the number of copies of the ith allele in the

population. Consequently, xi,t ¼ ni,t/2Ne is the frequency of allele

i at time t. As usual, we define the scaled mutation rate m ¼ 4Neu.

(ii) Recombination and erosion of the targets by dBGC
The recombination activity induced by an allele is maximal at the

birth of this allele. As time proceeds forward, however, the tar-

gets of the allele are progressively eroded by dBGC. This

erosion is modelled implicitly, by tracking over time the fraction

of active targets associated with each allele. This fraction is

denoted as ui,t for allele i at time t. In the following, this fraction

will be called the activity induced by allele i. Because of dBGC,

this fraction is a decreasing function of time.

We assume an additive model for the genome-wide recombi-

nation induced by a given genotype. Specifically, consider a

diploid individual, with alleles i and j at the PRDM9 locus.

At time t, the activities of these two alleles are ui,t and uj,t, respect-

ively. The genome-wide recombination activity in this individual

is then assumed to be proportional to

Rij ¼
ui,t þ u j,t

2
:

Note that this is assumed to be valid also for a homozygous indi-

vidual (i.e. when i ¼ j ). Note also that Rij is the relative

recombination activity. The absolute recombination activity

would be equal to Rij multiplied by the total number of targets

and the recombination rate induced by each target (which are

not explicitly considered).

Mechanistically, the strength of dBGC depends on several fac-

tors: in particular, the rate at which a target site initiates DSB events

and the probability that the site undergoes gene conversion upon

initiating a DSB. Similarly, the recombination (i.e. CO) rate induced

by a given hot spot depends on the rate of DSB initiation and on the

probability that this initiation will result in a CO event, as opposed

to a NCO or a resolution with the sister chromatid instead of the

homologue. Here, we assume that all those factors are constant

across all hot spots. Thus, in the end, we only need to consider

the net rate g, per generation, at which a given mutant allele of

the target site converts its wild-type homologue in an individual

heterozygote at that target site and homozygous for the PRDM9

allele recognizing this target site.

Note that g is the conversion rate conditional on the PRDM9

genotype of the individual. On the other hand, at the level of the

population, the conversion rate at this site will also depend on

the rate at which DSB is initiated at that site, which in turn is

proportional to the frequency of the PRDM9 allele in the popu-

lation. Thus, for allele i, segregating at frequency xi,t at time t, the

conversion strength at a target site of this allele is equal to gxi,t.

As the mutation rate at the target sites v is typically low (v �
1027, thus 4Nev� 1), at any given time, most targets associated
with a given PRDM9 allele are either fully active, or fully inactive

(i.e. a minor fraction of the targets are in a polymorphic state). As a

result, the rate at which the activity induced by allele i over the

entire genome decays is just the rate of substitution from active

to inactive hot spots at the level of the population. This substitution

rate is itself equal to the rate of inactivating mutations per target at

the level of the population, 2Nev, multiplied by the fixation prob-

ability of the inactive mutant. Under strong dBGC, the fixation

probability is equal to 2gxi,t. Altogether, the activity induced by

allele i decays as follows:

dui,t

dt
¼ �2Nev2gxi,tui,t ¼ �rxi,tui,t, ð2:1Þ

where we define the scaled erosion rate r ¼ 4Nevg. Note that, under

the mutation-fixation approximation considered here for the effect

of dBGC on the targets, the behaviour of the Red Queen process

depends on the mutation rate at the targets v and the strength of

conversion g only through their product vg, which we call the

erosion rate.

(iii) Selection
The fitness of an individual is assumed to be an increasing func-

tion f of its relative recombination activity R [ (0, 1). In the

following, we will more specifically consider two alternative

fitness functions:

— a power-law function:

fðRÞ ¼ Ra, ð2:2Þ

where a is a parameter of the model. Larger values of a

induce a stronger selection against low recombination rates

(electronic supplementary material, figure S1)

— an exponential function:

fðRÞ ¼ 1� e�R=b

1� e�1=b
, ð2:3Þ

Here also, large values of b induce a stronger selection

against low recombination rates (electronic supplementary

material, figure S1).

The fitness functions are normalized so that f (1) ¼ 1.

The fitness of an individual with genotype (i, j ) is thus

wi,j ¼ f
ui,t þ u j,t

2

� �
:

The average fitness induced by allele i over the population is then

given by

wi,t ¼ w(ui,t) ¼
XKt

j¼1

x j,tf
ui,t þ u j,t

2

� �

and the mean fitness over the population is

�w ¼
XKt

i¼1

xi,twi,t:

Finally, we define the selection coefficient si,t associated with

allele i at time t as

si,t ¼
wi,t � �w

�w
:

In particular, the selection coefficient associated with a new allele

entering the population, which will be denoted by s0, is

s0 ¼
1� �w

�w
: ð2:4Þ

(iv) Overall simulation cycle
For each new generation, the simulation is decomposed in three

steps, performed in the following order:
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— Mutation and creation of new alleles of PRDM9: the number

of new alleles is drawn from a Poisson distribution with

mean 2Neu. Each new allele replaces a randomly chosen

resident allele;

— Erosion: the activity of each allele currently segregating in the

population is eroded by a factor proportional to the frequency

of the allele: ui,tþ1 ¼ ui,t exp (�rxi,t), for i ¼ 1..Kt;

— Drift and selection: the new generation of 2Ne haploid copies

is drawn from a multinomial distribution. The probability of

drawing allele i is equal to its frequency xi,t multiplied by its

relative fitness wi,t=�w.

The model was implemented in Python, the code is hosted

athttps://github.com/ThibaultLatrille/RedQueen. Each simu-

lation starts by a burn-in, and the data are recorded only once

the steady state is reached. The burn-in phase is finished when

all initial alleles in the population are extinct and replaced by

new alleles. The number of generations simulated at the steady

state is 50 times the number of generations that were needed

to achieve the burn-in.

(v) Model with variation in strength across hot spots
The model introduced thus far assumes that all active hot spots

associated with a given PRDM9 allele recombine at the same

rate. A second model was also considered, allowing for variation

in the recombination rate across hot spots, according to a gamma

distribution of mean 1 (because we consider only relative

recombination rates) and shape parameter a:

f(c) ¼ aa

G(a)
ca�1 e�ac:

Under this model, the relation between the distribution of

hot-spot activity and the mean recombination rate over the

genome induced by a given allele is more complex than under

the uniform-rate model considered above. Specifically, for a

given relative recombination rate c . 0, we define uc,i,t as the frac-

tion of those hot spots recombining at relative rate c that are still

active at time t for allele i. Then, the overall fraction of active

targets for allele i at time t is given by

ui,t ¼
aa

G(a)

ðþ1

0

uc,i,tca�1 e�ac dc,

while the mean relative recombination rate induced by allele

i over the genome at time t is

Ri,t ¼
aa

G(a)

ðþ1

0

cuc,i,tca�1 e�ac dc:

In addition, as we assume that conversion strength and recombi-

nation rates are proportional, the rate of erosion for the fraction of

hot spots recombining at rate c decays at a rate proportional

to c, i.e.

duc,i,t

dt
¼ �rxi,tcuc,i,t:

(b) Summary of the model parameters
Altogether, the model effectively depends on four parameters:

the effective population size Ne, the erosion rate vg, the mutation

rate u at the PRDM9 locus and the parameter of the fitness func-

tion (or fitness parameter), which is either a (under the power-

law fitness function) or b (when using the exponential fitness

function). The model allowing for variation in the recombination

rate across hot spots also depends on the shape parameter a, thus

giving a total of five parameters for this model.

In the following, three compound parameters will turn

out to be of particular importance. First, the scaled erosion

rate r ¼ 4Nevg and the scaled mutation rate at the PRDM9 locus

m ¼ 4Neu, which were already introduced above. Second, the com-

pound parameter e ¼ r/m ¼ vg/u. This parameter measures the
relative strength of the two arms of the Red Queen (erosion, at

rate r, versus restoration of recombination, at rate m), and thus

determines the erosion–restoration balance of the Red Queen. Intui-

tively, for small e, the mutational input at the PRDM9 locus

dominates over the rate of erosion, and thus the equilibrium level

of erosion of recombination landscapes is expected to be low.

Conversely, for large e, the stationary regime of the Red Queen is

expected to be characterized by high erosion levels. Note that e

does not depend on Ne.

(c) Summary statistics
To explore the behaviour of the model as a function of the par-

ameters, several summary statistics were considered. These

statistics are meant to capture key features of the Red Queen

dynamics: the diversity at the PRDM9 locus, the mean recombi-

nation rate over the population at stationarity and the time of

turnover of the genetic diversity at the PRDM9 locus (or, equiva-

lently, the time of turnover of recombination landscapes). These

summary statistics are computed at stationarity and are averaged

over long simulation trajectories.

(i) Diversity of PRDM9
Diversity can be defined in several ways; for example, one could

consider the number of distinct alleles Kt. One shortcoming of

this definition is that Kt is strongly sensitive to the behaviour

of low-frequency PRDM9 alleles, most of which never invade the

population and therefore do not meaningfully contribute to

the macroscopic behaviour of the model. An alternative, more

relevant, measure of diversity is the inverse of the homozygosity:

D ¼ kDtl ¼ k 1P
i[Kt

x2
i,tl:

Note that D equals K if all alleles have equal weights and is close

to 1 if one allele dominates the population. Thus, D can be seen

as the effective number of PRDM9 alleles.

(ii) Mean relative recombination rate
As the model linking the activity of each allele (the fraction of

active targets) with genome-wide recombination is additive,

the average relative genome-wide recombination rate at the

population level is equal to

R ¼ kRtl ¼ kXi[Kt

xi,tui,tl:
(iii) Turnover time
The turnover time is defined as the decorrelation time of the diver-

sity at the PRDM9 locus. This can be quantitatively assessed using

the cross-homozygosity (CH), which is defined as the fraction of

homozygotes in a population that would be obtained by hybridiz-

ing populations at time t and t þ T in equal proportions. The CH

reduces to the regular (or instant) homozygosity for T ¼ 0 and

drops to 0 for large T. The turnover time is defined as the time T
for which the cross-heterozygosity is equal to half of the instant

homozygosity.

CHt¼T

CHt¼0
¼ k
P

i[Kt
xi,txi,tþTP

i[Kt
xi,txi,t l ¼ 1

2
:

A series of phase diagrams, showing the scaling relations

between summary statistics and parameters of the model, were

obtained as follows. For each parameter, 64 independent simu-

lations were run, each time changing the value of only one

parameter around its central value. The range around the central

value of the parameter is 104. The mean and the variance of each

summary statistic was calculated for each simulation, and plotted

as a function of the parameter.

http://https://github.com/ThibaultLatrille/RedQueen
http://https://github.com/ThibaultLatrille/RedQueen
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Figure 1. A typical simulation trajectory of the Red Queen model, with allele frequencies (x, top) and allele activity (u, bottom, orange) through time. The green
line represents the mean recombination activity (mean of u) over the simulation. (Online version in colour.)
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3. Results
(a) Simulation results
A typical simulation trajectory is displayed in figure 1. As

time proceeds forward, new PRDM9 alleles, created by

mutation, invade the population and increase in frequency,

reaching a peak and then decreasing until being lost and

replaced by new alleles figure 1a. Tracking the activity of

each allele through time (figure 1b) shows that new alleles

start with maximal recombination activity. Progressively,

however, their targets are eroded by dBGC. When the activity

induced by an allele goes below the average activity over the

population (whose equilibrium value over time, R, is shown

as a straight line in figure 1b), this allele starts to be selected

against, decreasing in frequency, until being eliminated from

the population. Of note, the activity of a dying allele is typi-

cally not 0. Instead, it reaches a finite level, whose average

value (R1) will be considered further below.

As a way to capture the key features of the Red Queen

dynamics at stationarity, three summary statistics were

considered: mean recombination activity, genetic diversity

at the PRDM9 locus and turnover time (i.e. the decorrelation

time of genetic composition at the PRDM9 locus). For a given

configuration of parameters of the model (effective popu-

lation size Ne, mutation rate at the PRDM9 locus u, erosion

rate at the targets vg, fitness parameter a or b), these three

statistics were averaged over long simulation trajectories.

Their scaling behaviour as a function of the four main

parameters are displayed on figures 2–4. Several points

are noteworthy.

First, the equilibrium recombination rate is suboptimal:

R , 1 (figure 2). Equivalently, there is a recombination gap
1– R caused by the Red Queen. One question of interest,

which will be further considered below, is to characterize

and quantify this recombination gap. Another important

observation is that the equilibrium recombination rate (R) is

constant as a function of Ne. It increases with u and a and

decreases with vg.

Second, plotting PRDM9 diversity (D) as a function of Ne

and u (figure 3) reveals two distinct regimes. The transition
between the two regimes appears to essentially depend on

the scaled mutation rate (m ¼ 4Neu) at the PRDM9 locus. For

low scaled mutation rates (Neu� 1), at any given time, a

single PRDM9 allele dominates the population (D ¼ 1).

In this succession regime, PRDM9 alleles replace each other

through hard sweeps—which corresponds to the typical

verbal description of the Red Queen dynamics. In this regime,

increasing Ne merely accelerates the dynamics (turnover time,

figure 4). At any time, recombination is concentrated on one

single set of recombination hot spots (corresponding to the cur-

rently dominating PRDM9 allele), and thus the variance of

recombination landscapes is maximal.

On the other hand, when Neu is sufficiently high, succes-

sive waves of erosion–invasion start to overlap, such that

multiple PRDM9 alleles now coexist in the population. In this

polymorphic regime, diversity at the PRDM9 locus is roughly

proportional to Neu (figure 3) and does not strongly depend on

the erosion rate vg nor on the fitness parametera. Furthermore,

the consequence of an increase in Ne is not anymore an accel-

eration of the dynamics, as in the succession regime. Instead,

when Ne increases, PRDM9 diversity increases, such that

recombination spreads over a larger number of more weakly

recombining hot spots, thus resulting in an overall decrease

in the variance of recombination landscapes at the level of

the population. Conversely, the fact that the recombination

hot spots become weaker exactly compensates for the increase

in the strength of biased-gene conversion caused by the

larger effective population size, and thus hot-spot lifetime

(turnover time) now remains constant as a function of Ne

(figure 4).

(b) Analytical approximations: a linearized mean-field
argument

In the following, we derive analytical approximations of the

Red Queen model introduced above. These approximations

are meant to capture the scaling relations between summary

statistics and model parameters observed in the simulation

experiments. They will also provide mechanistic insights

into the inner working of the Red Queen process.
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The two regimes, succession and polymorphic, are con-

sidered in turn. In both cases, the general structure of the

argument is as follows. In principle, the changes in frequency

of a typical PRDM9 allele are determined by a combination of

selective effects and random drift. Furthermore, selection nor-

mally depends on the relative difference between the fitness

of the allele and the constantly fluctuating fitness background

of the population. Our main simplifications are to (i) ignore

stochastic effects and to consider a deterministic version of

the model (strong selection); (ii) to consider that the mean

fitness of the population is constant through time, being

equal to its time average (mean-field approximation); (iii) to

assume that the differences in fitness between alleles are

small, so that we can linearize the fitness function as a func-

tion of the ui’s (linear model). A more general version of the

model not making assumption (iii) will be considered in the

next subsection.

Linearizing the model allows us to express the mean fitness

of the population, and therefore also the selection coefficient

experienced by a new allele entering the population, as a func-

tion of R, the mean recombination activity in the population.

This selection coefficient determines the mean waiting time t

between successive invasions of the population by new alleles.

Thus, we can express t as a function of R and the parameters of

the model. Conversely, knowing the waiting time before

the next invasion, and accounting for ongoing erosion of

recombination for resident alleles over this time leads to an

estimate of the mean equilibrium recombination activity of

the population R, as a function of t. Combining these two

relations and eliminating t leads to a self-consistent mean-

field estimate of R. From there, we can derive estimates for

all other summary statistics.
The self-consistent estimate of R obtained using this

approach is implicit: it is the solution of an equation of the

form R ¼ g(R), which can be solved only numerically. An

explicit approximate solution will be derived under the

additional assumption that the recombination gap is small

1 2 R� 1 (weak erosion approximation).

(i) Analytical approximations in the succession regime
In the succession regime, there is essentially one PRDM9 allele

at a time, whose frequency is close to 1. As a consequence, and

from equation (2.1), the recombination activity associated with

this allele decreases at constant rate r ¼ 4Nevg:

dut

dt
¼ �rut

and thus ut follows an exponential decrease through time:

ut ¼ e�rt:

Let us call t the mean time between two successive invasions.

We now derive two independent relations between t and R.

First, we can derive an approximation for the rate of inva-

sion of the population by a new PRDM9 allele using a simple

population genetic argument. This rate is equal to the rate of

mutation at the PRDM9 locus at the level of the population,

2Neu, multiplied by the probability of invasion, which is

itself equal to 2s0, where s0 is the selection coefficient experi-

enced by the new allele (equation (2.4)). This coefficient

depends on the current activity of the resident allele, ut (the

activity of the invading allele is 1). After linearization, it

can be expressed as

s0 ¼
f 0(ut)

f(ut)

(1� ut)

2
:
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Figure 5. Trajectory of the frequency and the activity of a typical allele
through time, under the deterministic and mean-field approximation (see
text for details). (Online version in colour.)
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In principle, this selection coefficient depends on time,

through ut. However, we can approximate it by a constant

coefficient, by just replacing ut by the average activity R in

this equation:

s0 ≃ f 0(R)

f(R)

(1� R)

2
:

This leads to the following estimate for the rate of invasion:

l ≃ m
f 0(R)

f(R)

(1� R)

2
,

where m ¼ 4Neu is the scaled mutation rate at the PRDM9

locus. The inverse of l gives an approximation to t, thus

leading to our first relation:

t ≃ 1

m

f(R)

f 0(R)

2

(1� R)
: ð3:1Þ

Second, the mean recombination activity is simply the

time average of ut over the time where the allele dominates

the population. This time is (on average) equal to t, thus

leading to the following approximation:

R ≃ 1

t

ðt
0

ut dt ¼ 1

t

ðt
0

e�rt dt ¼ 1� e�rt

rt
: ð3:2Þ

Noting that the minimum activity of a dying allele, at the

time where it is being replaced by a new allele (i.e. at time

t), is equal to

R1 ¼ e�rt, ð3:3Þ

equation (3.2) can be rewritten as:

1� R1 þ R log (R1) ¼ 0:

This relation between R and R1 will also be found in the

polymorphic regime.

Finally, substituting t in equation (3.2) by its expression

given by equation (3.1) leads to a self-consistent equation

on R, which, after some algebra, can be expressed in compact

form as

R ¼ g(R, e), ð3:4Þ

where g is a numerical function and e ¼ vg/u is the

erosion–restoration balance parameter (see summary of

model parameters in the Material and methods section).

This self-consistent relation has a unique solution (electro-

nic supplementary material, figure S2, in the case of

a power-law fitness function), which can be obtained

numerically, giving an estimate for R. Note that this self-

consistent solution for R implies that R depends on the

parameters of the model only through e , which is itself

independent of Ne. As a result, the solution R is also inde-

pendent of the effective population size, as our simulation

was suggesting.

Once a numerical estimate of R is available, all other

quantities of interest can be expressed as a function of R
and of the parameters of the model. The diversity at the

PRDM9 locus D is simply equal to 1 because there is only

one allele. As for the turnover time T, it is simply equal to

the mean time between two successive invasions t, already

given above as a function of R (equation (3.1)). Note that

this time is inversely proportional to Ne. In other words, in

the succession regime, changes in Ne merely change the time-

scale of the Red Queen dynamics, without any effect on the

stationary state.
(ii) Analytical approximations in polymorphic regime
Ignoring random drift and linearizing the fitness as a func-

tion of the activities, a closed set of differential equations

for the frequencies of PRDM9 alleles (xi,t) and their associated

recombination rate (ui,t) can be derived:

dxi,t

dt
¼ f 0(Rt)

2f(Rt)
(ui,t � Rt)xi,t, i ¼ 1 . . . Kt,

dui,t

dt
¼ �rxi,tui,t, i ¼ 1 . . . Kt

and Rt ¼
XKt

i¼1

xi,tui,t:

9>>>>>>>>>=
>>>>>>>>>;

ð3:5Þ

Under the assumption of many alleles co-segregating in

the population, Rt ¼ R is essentially constant, owing to an

averaging effect over the specific trajectories of each allele.

This leads to a decoupling of the above system of equations.

As a result, we can focus on the trajectory of a single typical

allele, with frequency xt and relative recombination rate ut:

dxt

dt
¼ f 0(R)

2f(R)
(ut � R)xt

and
dut

dt
¼ �rxtut:

9>>>=
>>>;

ð3:6Þ

Here, R is now an external parameter, which will be

determined in a second step, using a self-consistent argument.

A numerical solution of this system of equations, for a

given value of R, is shown in figure 5: starting from a low fre-

quency and a maximal activity, a typical allele first increases

in frequency. Concomitantly, its activity is progressively

eroded, at an increasingly higher rate. When the activity

reaches the (now externally given) R, the allele frequency

reaches its maximum, after which it starts to decrease,

ultimately going to 0. Meanwhile, the activity converges to

a strictly positive asymptotic value R1.

This system of equations does not have an analytical sol-

ution as a function of t. On the other hand, ut is monotonic,

and x can be analytically expressed as a function of ut:

x(ut) ¼
f 0(R)

2rf(R)
(1� ut þ R log (ut))þ xinitial:

Letting t!1, ut converges to R1 and x(ut) to 0. In

addition, as xinitial ¼ 1/Ne is small, we can let it go to 0,



2 4 6 8 10 12

x x

t
t

14
t t

2 4 6 8 10 12 14

Figure 6. A tiling principle. On the left, An idealized realization of the Red Queen dynamics is depicted, in which new alleles invade the population at regular time
intervals, all equal to t, and have the same allele frequency trajectory. Taking the sum of allele frequencies at any given time (vertical bar), which by definition is
equal to 1, is then equivalent to summing the values taken by the frequency of one specific allele at regular time intervals (right). Multiplying this sum by t

amounts to approximating the integral
Ð

xt dt by the histogram shown on the right panel. Thus,
Ð

xt dt ≃ t
P

xi ¼ t. This argument can more generally be
used to approximate any sum of the form

P
xif(xi ,ui ) by the corresponding integral (1=t)

Ð
xtf(xt ,ut ) dt. (Online version in colour.)
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which yields a relation between R and R1:

0 ≃ 1� R1 þ R log (R1): ð3:7Þ

Note that this is the same equation as in the succession

regime.

So far, we have considered R as an external parameter.

Now, if all alleles have the same trajectory but different arri-

val times, they all contribute to R. Using this argument, we

can get a self-consistent estimation for R. This can be done

by deriving two independent relations between t and R.

First, using a tiling principle (figure 6), we note that
ðþ1

0

xt dt ≃ t
X

i

xi ¼ t: ð3:8Þ

Although xt is not analytically available as a function of t, the

integral can be analytically computed (electronic supplemen-

tary material, appendix S1), leading to the following relation:

t ¼ 1� R1

rR
¼ � log (R1)

r
:

Inverting this equation gives

R1 ¼ e�rt,

which is the same expression for R1 as that found in the suc-

cession regime (equation (3.3)). Replacing R1 by this

expression in equation (3.7) then gives

R ¼ 1� e�rt

rt
, ð3:9Þ

again, as in the succession regime (equation (3.2)).

Second, relying on the population-genetic argument used

in the context of the succession regime, we can identify the

time between two successive invasions t as the inverse of

the rate of invasion l, which is equal to the mutation rate

multipled by 2s0, where s0 is the selection coefficient experi-

enced by the newly invading allele, in a background

recombination activity equal to R:

t ¼ 1

m

f(R)

f 0(R)

2

(1� R)
: ð3:10Þ

Although derived using different arguments, these two

relations, equations (3.9) and (3.10), are the same as those

obtained under the succession regime (equations (3.2) and
(3.1)). Combining them together therefore leads to the same

self-consistent equation for R (equation (3.4)), which gives us

a numerical estimate of R also valid in the polymorphic regime.

Once a numerical estimate of R is available, other sum-

mary statistics can be computed as a function of R. Thus,

using the same tiling argument as above, the diversity at

the PRDM9 locus D can be obtained from

X
i

x2
i ≃ 1

t

ð1

0

x2
t dt,

which is also analytically available (electronic supplementary

material, appendix S1). Finally, the turnover time T can be

determined by observing that, if D is to be interpreted as

the effective number of alleles at the PRDM9 locus, then the

genetic diversity at this locus will be entirely renewed after

D successive invasions, each of which takes on average

a time t. Therefore, T ¼ Dt, with D and t given above as

a function of R, R1 and the parameters of the model.
(c) A more general derivation of the mean-field
argument

The derivation conducted in the last section relies on a linear-

ization of the fitness function, which allows us to express all

quantities of interest as functions of the mean recombination

activity R, and thus express the self-consistent mean-field

argument directly on R. However, this linear approximation

is not well suited to all fitness models. An alternative, more

general, derivation of the self-consistent mean-field argument

can be conducted, which can be used for arbitrary fitness

schemes. This derivation can also be generalized to more

complex models, in particular, allowing for variation in

recombination rates across hot spots (next section).

The whole derivation is given in electronic supplementary

material, appendix S2 under the polymorphic regime. Briefly,

the idea is to first generalize the tiling argument introduced

in the last section, which essentially expresses that, at station-

arity, averaging over the population at any given time is

equivalent to averaging over the trajectory of a typical allele.

Using this argument, we can express the selection coefficient

s0 associated with a newborn allele as an integral depending

on the distribution of activities in the population. This integral
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is a function of the compound parameter t. Conversely, given

s0, and using the same argument as in the last section, we can

derive an estimate of t, as the inverse of l ¼ 4Neus0. Combining

these two equations yields a self-consistent relation, now on the

selection coefficient s0. The solution to this equation can

be found numerically and can then be used to compute all

summary statistics of interest.
 blishing.org
Phil.Trans.R.Soc.B

372:20160463
(d) Allowing for variation among hot spots
in recombination rate

Thus far, the model assumes that all active hot spots have

the same recombination rate (and thus are subjected to the

same conversion strength). In reality, there is a substantial

variance across hot spots in their recombination rate [3,4].

In this section, we explore a generalization of the Red

Queen model that relaxes this uniformity assumption, by pro-

posing that the distribution of relative recombination rates

across the hot spots associated with a newborn PRDM9

allele is a gamma distribution of mean 1 and shape parameter

a (with smaller value of a inducing higher variance across hot

spots). On the other hand, all newborn PRDM9 alleles are still

assumed to induce the same distribution of recombination

activity over the genome (and, in particular, the same total

recombination activity).

This new version of the model was explored only under

the mean-field approximation, not backed up by explicit simu-

lations. The mean-field derivation is essentially the same as

the generalized version introduced in the previous section,

with the only difference that the integral equation for s0 is

now computed by averaging over the gamma distribution

for a given allele of a given age. This again leads to a self-con-

sistent relation on s0 which can be solved numerically (see

electronic supplementary material, appendix S3 for details).

As before, once the self-consistent solution is found, the

summary statistics (in particular, the mean recombination

activity R) at the equilibrium set point can be computed. In

addition to R, the mean fraction of active targets per allele,

which we call H, is another statistic of interest, for which

direct empirical evidence is available [25,26]. Thus far, without

variance across hot spots in their basal recombination rate, the

two statistics R and H were identical. However, this is not any-

more the case under the gamma model now considered. Both

R and H can be analytically computed as a function of rt

(electronic supplementary material, appendix S3).
(e) General scaling behaviour
(i) Scaling relations as a function of Ne
Even without any explicit or any numerical solution for s0, the

relations derived above for the recombination activity R, the

mean time between successive invasions t, the selection coeffi-

cient s0 acting on new PRDM9 alleles, the turnover time T and

the diversity D at the PRDM9 locus imply the following scaling

relations for all of these quantities as a function of Ne. First, s0 is

the solution of a self-consistent equation that depends only on

the erosion–restoration balance parameter e ¼ vg/u (electronic

supplementary material, appendix S2) and therefore does not

depend on Ne. The same thing is true more generally for rt

and thus also for all quantities that depend only on rt: in par-

ticular R and T. As r ¼ 4Nevg itself is directly proportional to

Ne and as rt does not depend on Ne, t is inversely proportional
to Ne. In turn, as T ¼ tD is constant as a function of Ne, D is

proportional to Ne.

All of those relations are valid in the polymorphic regime.

In the succession regime, the main difference is that D ¼ 1,

by definition. Otherwise, R, t and s are still constant as a

function of Ne, and T is now inversely proportional to Ne.
(ii) First-order development in the weak erosion regime (e � 1)
Throughout the self-consistent derivation presented in the last

sections, the compound parameter e ¼ vg/u plays a key role.

This parameter captures the relative strength of the two antag-

onistic forces of the Red Queen process, the rate of erosion of

PRDM9 targets by dBGC, proportional to vg, and the rate of

invasion by new PRDM9 variants, proportional to u. The

equilibrium set point (or erosion–restoration balance) of the

Red Queen process, in terms of the realized value of R, is essen-

tially detemined by the relative magnitude of these two forces.

Thus, if e � 1, erosion is strong compared to elicitation of new

PRDM9 alleles, and R is expected to be small. Conversely, if

e � 1, R is close to 1.

The weak erosion case (e � 1) lends itself to a simple first-

order approximation of the self-consistent mean-field sol-

ution. This approximation may not be strictly valid in the

empirically relevant regimes where depletion levels seem to

be substantial (see below). Nevertheless, it leads to simple

expressions for all summary statistics of interest in the station-

ary regime, thus giving a very concise (if somewhat idealized)

summary of the scaling of the stationary regime of the Red

Queen as a function of the parameters of the model.

The details of this first-order development are given in

electronic supplementary material, appendix S4. In the end,

all of the scaling relations can be expressed in terms of two

compound parameters, e ¼ vg/u and Neu. In this regime,

the scaling relations are then as follows: in the polymorphic

regime, rt, s and 1 2 R scale as
ffiffiffi
e
p

, T as 1=
ffiffiffi
e
p

, and D as

Neu. In the succession regime, the only difference is that

D ¼ 1 and that T now scales as1=Neu
ffiffiffi
e
p

.

4. Comparing analytical approximations
with simulation results

The scaling relations predicted by our mean-field appro-

ximations, both linearized (green) and generalized (red), as

well as the weak erosion approximation (orange), are shown

on the top of the simulation results (under the power-law fitness

model, with central parameter values a ¼ 0.01, u ¼ 1026, vg¼
1029 and Ne ¼ 105), for the mean equilibrium recombination

level R (figure 2), the genetic diversity D (figure 3) and the turn-

over time T (figure 4). In spite of the rather bold approximations

that were made, the predictions of both the linearized and the

generalized mean-field solutions agree very well with the simu-

lation results. Expectedly, the weak erosion approximation fails

when the recombination gap becomes significant (typically,

when 1 2 R is larger than 0.2).

One specific but notable deviation of the mean-field

approximations from the simulation results occurs for the pre-

dicted equilibrium diversity D in the regime of a high scaled

mutation rate, Neu� 1 (electronic supplementary material,

figur S3). A plausible explanation for this discrepancy is that

we did not account, in our mean-field development, for the

decrease in the frequency of a typical PRDM9 allele between
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successive generations directly due to the mutation pressure.

This approximation is expected to be invalid whenever s and

u are of the same order of magnitude.

The linearized version of the mean-field solution is less

accurate under the exponential fitness model and for small

values of the fitness parameter b (electronic supplementary

material, figures S3–S6), probably because the exponential

fitness function shows a stronger concavity at the equilibrium

set point. In this regime, on the other hand, the generalized

mean-field solution is accurate. Of note, under the exponen-

tial fitness function, the weak erosion approximation tends

to break down for smaller recombination gaps than under

the power-law fitness function.

Finally, a key assumption of the mean-field derivation is

that selection on PRDM9 is sufficiently strong so that we

can ignore random drift. In the parameter regimes considered

thus far, this turns out to be the case: the scaled selection

coefficient 4Nes0 at stationarity is always greater than 10,

and usually of the order of 100 (electronic supplementary

material, figure S6 under the exponential fitness function).

However, for other parameter regimes (in particular, a smal-

ler Ne or a smaller value for the fitness parameter a under the

power-law fitness model), selection is not so strong compared

to random drift (with a scaled selection coefficient 4Nes0 esti-

mated under the mean-field approximation to be below 10).

In this weaker selection regime, both versions of the mean-

field approximation start to be substantially less accurate

(electronic supplementary material, figures S7 and S8).

In summary, our mean-field derivation, at least in its gener-

alized version, is accurate under all strong-selection regimes (in

practice, whenever the self-consistent estimate of the scaled

selection coefficient 4Nes0 . 10). Its linearized form is accurate

as long as the log-fitness function is not too concave. And

finally, the first-order weak erosion regime approximation

(e � 1) is, rather expectedly, valid only for small equilibrium

recombination gaps (1 2 R , 0.2).
5. Scaling of the model allowing for variation
in hot-spot strength

The model allowing for variation in hot-spot strength was

explored under the generalized mean-field approximation,

for several values of the shape parameter, ranging from low

(a ¼ 5) to high (a ¼ 0.5) variance across hot spots (electronic

supplementary material, figures S9–S12). In the limit a!1,

this model reduces to the uniform model considered thus far,

which is also indicated on the figures for comparison.

Under a fixed parameter regime, the mean fraction of active

targets at equilibrium H (electronic supplementary material,

figure S9) tends to increase as the variance increases (i.e. as

the shape parameter a decreases). By contrast, the equilbirium

recombination rate R (not shown) tendsto decrease with decreas-

ing a. This opposite behaviour of R and H, when avaries, is due to

the fact that strongest hot spots are the first to be eroded, and

thus, the depletion of the genome-wide recombination activity

at equilibrium is mostly contributed by the extinction of a

relatively minor fraction of very strong hot spots. This effect is

stronger for smaller values of the shape parameter a.

The equilibrium diversity also tends to decreasewith increas-

ing variance (decreasing a) under most parameter regimes

(electronic supplementary material, figure S10), except for extre-

mely high conversion rates vg or extremely weak selection
regimes (very small a). Correlatively, the turnover time (which

is directly proportional to diversity), also tends to decrease

with increasing variance across hot spots (not shown). Globally,

however, the equilibrium regime of the Red Queen process is

only moderately dependent on the variation in strength across

hot spots (on the exact value of a).
(a) Empirical calibration
The model can be tentatively calibrated against current empiri-

cal evidence in the mouse as follows. First, some of the

parameters of the model can be fixed a priori. The effective

population size in mouse subspecies is of the order of 105

[19]. Assuming a point mutation rate of 1028 per generation

and an effective number of 10 inactivating mutations per

target, v can be estimated to be of the order of 1027. DBS

initiation maps inferred by Chip-Seq [8] suggest that the distri-

bution of DSB initiation is approximately exponential (i.e.

gamma with a shape parameter a ¼ 1). This leaves us with

three parameters to estimate, u, g and the fitness parameter a

under the power-law model.

These three parameters can be estimated by constraining

the model using the three summary statistics D, S0 and H. In

each of the three mouse subspecies, castaneus, domesticus and

musculus, there is one major PRDM9 allele segregating at a fre-

quency of the order of 30%, with most other alleles being much

rarer [18,19], thus suggesting a value of D between 5 and 10 in

each subpopulation. Experiments on hybrids between subspe-

cies show that the major allele of each subspecies has eroded a

fraction of its targets of the order of H ≃ 50% [25,26]. Finally,

patterns of non-synonymous versus synonymous variation

clearly indicate the presence of strong positive selection

acting on the Zn-finger array of PRDM9 [17,19], suggesting a

scaled selection coefficient S0 well above 1.

Altogether, this defines empirically reasonable values for

the three summary statistics (D ¼ 10, H ¼ 0.5 and S0 ¼ 10),

which could be qualitatively reproduced by manual adjust-

ment of the three free parameters of the model, giving the

following estimates of a ¼ 1024, u ¼ 3 � 1026 and g ¼ 3 �
1023 (table 1, first row)—thus suggesting a high mutation

rate u and a strong dBGC.

This empirical calibration of the model is at best qualitative.

However, the problem turns out to be rather constrained, such

that it seems to inevitably lead to a high mutation rate and a

strong dBGC. Thus, for instance, allowing for a lower g,

under otherwise fixed values for u and a, would lead to equili-

brium levels of erosion that are low compared to empirically

observed levels (H . 80%, table 1, second row). Decreasing g
could be compensated for by also decreasing u by the same

factor, so as to predict levels of depletion of the order of 50%

(third row of table 1). However, this would then lead to insuf-

ficient levels of PRDM9 diversity, essentially pushing the

process into the succession regime (D ¼ 1). Alternatively, com-

pensating the decrease in g by a decrease in the value of a

would push the Red Queen into the weak selection regime in

the mouse (fourth row S0 ¼ 2.6).

Finally, our estimates of u and g can be compared with cur-

rent available empirical evidence. Concerning u, based on

sperm-typing experiments, a mutation rate of the order of

1025, thus not so far from our own estimate, has been inferred

in humans [28]. However, this reported value corresponds to

the raw mutation rate, i.e. not corrected for the production of

non-functional, deleterious or redundant PRDM9 variants



Table 1. Summary statistics predicted by the model with variation in hot-spot strength, under the generalized mean-field solution, for different combination of
parameter values (in all cases, a ¼ 1, v ¼ 1027). H: mean fraction of active targets per allele, D: PRDM9 diversity, S0 ¼ 4Nes0: scaled selection coefficient
associated with a new PRDM9 allele entering the population, T: turnover time.

u g a e ¼ vg
u H D S0 T

3 � 1026 3 � 1023 1 � 1024 1 � 1024 0.6 9.9 26 6.4 � 104

3 � 1026 3 � 1024 1 � 1024 1 � 1025 0.82 8.2 8.6 1.6 � 105

3 � 1027 3 � 1024 1 � 1024 1 � 1024 0.6 1 26 6.5 � 104

3 � 1026 3 � 1024 1 � 1025 1 � 1025 0.6 9.9 2.6 6.4 � 105
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recognizing similar target sites. Here, by contrast, u is the func-
tional mutation rate, leading to new functional alleles with

essentially new targets across the genome, which is expected

to be substantially lower than the raw mutation rate.

Concerning the strength of dBGC, based on a high-

resolution genetic map of a fraction of chromosome 1 in the

mouse [31], the mean rate of CO across hot spots can be

estimated to be of the order of 1023. Assuming a 10 : 1 ratio

for NCO versus CO events, this gives an estimate for g of the

order of 1022, thus slightly higher than our estimate. However,

this is an upper bound, granting systematic conversion of

the target site of PRDM9 upon each DSB initiation and assum-

ing complete inactivation of the target site by single point

mutations. In practice, there is indirect evidence that conver-

sion of the target site is not systematic in the mouse, in

particular in the case of NCOs [32]. In addition, mutations

are only partially inactivating PRDM9 binding, as indicated

by the presence of multiple substitutions at many of the now

extinct hot spots. Combined together, these two lines of empiri-

cal observations suggest that g might in fact be substantially

lower than 1022.

Thus, altogether, the strength of dBGC and the functional

mutation rate at the PRDM9 locus are both predicted by our

model to be close to their highest possible value compatible

with current empirical observations.
6. Discussion
In this work, we have presented a combination of simulations

and analytical and numerical approximations, giving new

insights into the population genetics of the Red Queen model

of recombination. Our more specific aim was to achieve a

better understanding of how the interplay between mutational

input, positive selection and dBGC modulates the statistical

patterns of PRDM9 diversity and the dynamics of recombina-

tion landscapes. In the end, our analysis yields a global

picture of the qualitative regimes and the scaling behaviour

of the Red Queen model, as a function of effective population

size and the parameters of the genetic system.

(a) Evolutionary regimes and scaling behaviour
The stationary regime of the Red Queen process can be

characterized in terms of the mean recombination activity R
(or, alternatively, the mean fraction of non-eroded targets

H ), genetic diversity at the PRDM9 locus D, characteristic

turnover time of recombination landscapes T and strength

of selection acting on new PRDM9 alleles s0. For the most

part, the overall scaling behaviour of all of these quantities

depends on the parameters of the model only through two
key compound parameters: first, the scaled mutation rate

m ¼ 4Neu at the PRDM9 locus and, second, the parameter

e ¼ r/m, which measures the relative strength of the two

arms of the Red Queen (erosion, at rate r ¼ 4Nevg, versus

restoration of recombination, at rate m ¼ 4Neu) and thus deter-

mines the erosion–restoration balance of the Red Queen. The

scaling relations are captured in a particularly compact form

in the weak erosion regime, using a first-order approximation

as a function of e . This approximation is less accurate in more

intense regimes, although, even then, it correctly describes the

qualitative behaviour of the process.

First, the mean level of erosion R, strength of selection on

new PRDM9 alleles s0 and turnover time T do not depend on

effective population size Ne (figures 2 and 4). Intuitively, the

equilbrium recombination activity is determined by the rela-

tive magnitude of the two forces of the Red Queen, erosion

and invasion, both of which are proportional to Ne. The effec-

tive population size cancels out from their ratio, and thus the

equilibrium set point does not depend on Ne.

Second, both 1 2 R and s0 increase with the erosion rate vg
and decrease with the mutation rate u at the PRDM9 locus.

Similar observations concerning the role of mutation rates at

the targets and at the PRDM9 locus were previously reported

based on simulation analyses [21]. Here, we give a more quan-

titative estimate of this scaling, in terms of e. Specifically, in the

weak erosion regime, 1 2 R and s0 scale as
ffiffiffi
e
p

, whereas T scales

as 1=
ffiffiffi
e
p

.

Third, in the polymorphic regime, mean recombination

activity and PRDM9 diversity are essentially uncoupled—in

the weak erosion limit, the first depends only on e and the

second only on Neu. Intuitively, the mean recombination

activity implied by a given value of e can be equivalently

realized, either by few PRDM9 alleles segregating at high

frequencies, eroding their targets at a high rate and thus

quickly replaced by other alleles, or by many alleles segregat-

ing at low frequencies, eroding their targets at a lower rate

and replaced less often. The choice between these alternative

regimes is essentially determined by the mutational input

at the PRDM9 locus, Neu—thus, in a sense, neutrally.

This last point is of particular importance concerning the

interpretation of the empirically observed patterns of poly-

morphism and divergence at the PRDM9 locus [17–20].

Positive selection on PRDM9 may easily reach very high

levels under reasonable parameter regimes of the Red Queen

process, which will easily translate into high ratios of non-

synonymous to synonymous rates. Even when very strong,

however, this type of positive selection is not diversifying.

At least under the assumptions of the models explored here,

mutation, not selection, explains the intra-specific genetic

diversity of PRDM9.
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The simulations presented here are based on relatively

simple (exponential and power-law) fitness schemes. In prac-

tice, the fitness of individuals as a function of their PRDM9

genotype might certainly be more complicated. In particular,

it may not necessarily be monotonic and instead show a

maximum for an intermediate CO rate. Further work might

be needed in this direction. Nevertheless, many of our results

appear to be relatively general. In particular, the scaling as a

function of Ne and the fact that diversity is determined by the

mutational input are essentially valid under arbitrary fitness

models, as long as the absolute fitness of a diploid can be

expressed as a function of the activities (fraction of active

targets) of its two alleles. On the other hand, more complex

models could be imagined, for which the results presented

here are not valid, in particular, if the fitness of an allele

directly depends on population-level quantities, such as the

amount of linkage disequilibrium (see below).

Self-consistent mean-field approximations have already

been used in the context of other evolutionary problems

(e.g. in [33]). They could, in principle, be applied to many

other evolutionary Red Queen models, at least if the aim is to

characterize the stationary regime. A key argument, repeatedly

used throughout our self-consistent mean-field derivation, is

the tiling principle (figure 6). This argument is in fact a specific

instance of the ergodicity principle, which states that averages

over the population and averages over allelic trajectories have

identical expectations at stationarity. The specific form taken

here by this principle is a consequence of the strong-selection

assumption. However, ergodicity arguments could be used

under more general conditions, in combination with diffusion

approximations, so as to derive mean-field approximations

that would also be valid in nearly neutral regimes. Such math-

ematical developments appear to be relatively complex,

although not out of reach.
(b) Empirical adequacy of the model
Our tentative empirical calibration of the model based on data

available for the mouse suggests a high mutation rate (u � 3 �
1026) and a strong dBGC (g � 3 � 1023). Compared to cur-

rently available empirical evidence, these estimates are not

unreasonable, although perhaps too high. There are several

possible reasons for this potential overestimation. One possi-

bility would be that the levels of depletion of the order of

50% that we have used to fit the model have been measured

specifically for the major PRDM9 alleles [25,26], which are pre-

cisely those alleles for which erosion is expected to be as its

highest levels. By contrast, the erosion level predicted by the

model, through the summary statistic H, is supposed to be a

weighted average over all segregating alleles, thus potentially

less extreme than 50% in the case of the mouse. Similarly, the

raw diversity at the PRDM9 locus is potentially contributed

at least in part by functionally equivalent alleles, recognizing

similar target sites. By contrast, and like for the mutation rate

u, the diversity D predicted by our model is supposed to corre-

spond to the functional diversity (i.e. the effective number of

functionally distinct alleles), thus potentially lower than the

raw diversity. Accounting for these two factors could easily

result in lower estimates for both g and u.

Finally, another possible explanation would be that, in our

model, the fitness of an allele only depends on the total

recombination activity induced by this allele, irrespective of

the fine-scale distribution of recombination over the genome.
This may be reasonable if the main role of recombination is to

promote correct chromosome segregation. However, the fine-

scale distribution of recombination across the genome plays

an important role in shaping the distribution of LD. In particu-

lar, under low PRDM9 diversity, recombination is concentrated

on few hot spots that are constantly reused at the level of the

population, thus creating large haplotype blocks within

which LD tends to accumulate, potentially resulting in a genetic

load through background selection or interference between

concurrent selective sweeps. In this context, rare PRDM9 alleles

could be favoured because they break up those large haplotype

blocks, thereby contributing to a more efficient dissipation of

LD. Unlike what we have considered in our model thus far,

this specific form of selection is inherently frequency-dependent

and therfore genuinely diversifying. As a result, it would

provide a mechanism for explaining high levels of PRDM9

polymorphism without having to invoke very high mutation

rates at this locus. In turn, allowing for a lower mutation rate

u would then make it possible to accomodate more reasonable

values for the strength of dBGC, g, while still predicting

significant levels of depletion of recombination landscapes.
(c) Perspectives
In spite of the remaining uncertainty about the exact value of

the mutation rate of the Zn-finger domain of PRDM9, there is

no doubt that this rate is one of the highest among all protein-

coding genes encoded by mammalian genomes. Given the

important role played by the mutational input at the PRDM9

locus in the restoration of recombination in the face of ongoing

erosion by dBGC, this empirical fact raises the question of why

the key trans-acting factor of the Red Queen of recombination

turnover happens to have such a high mutation rate in the

first place. An interesting possibility would be that PRDM9

has been co-opted in this intra-genomic Red Queen precisely

for that reason. Altermatively, the detailed genetic structure of

the Zn-finger domain could have been progressively optimized

through a higher-level evolutionary process. These interesting

speculations could be further investigated in the context of

the present modelling framework.

Finally, another intriguing aspect of PRDM9 is its role in

hybrid sterility [34]. Recent developments have suggested that

the hybrid sterility phenotype is directly related to the asymme-

try in the patterns of PRDM9 binding along chromosomes of

meiotic cells in F1 hybrids [25,26]. In turn, this asymmetry is a

direct consequence of the differential erosion of PRDM9 targets

along the two parental chromosomes, itself due to distinct major

PRDM9 alleles segregating in the two subpopulations of origin

[26]. Altogether, these observations point towards a potentially

important role for the Red Queen process of recombination

turnover in the creation of genetic barriers between subspecies.

The modelling framework introduced here could certainly

be extended in a meta-population context, so as to further

investigate those particularly interesting questions.
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