





**Predicting Selection on Traits and Sequences: Contrast Across Evolutionary Scales** 

### **Thibault Latrille** Université de Lausanne **Department of Ecolology & Evolution**

Latrille Thibault

Contrast Across Evolutionary Scales



p. 1

## What tools to bridge evolutionary scales? A combination of theoretical models and empirical studies.

Genes and sites under adaptation at the phylogenetic scale also exhibit adaptation at the population-genetic scale

Thibault Latrille<sup>a,b,c,1</sup>, Nicolas Rodrigue<sup>d</sup>, and Nicolas Lartillot<sup>a</sup>

### **Bridging Time Scales in Evolutionary Biology**

Diego A. Hartasánchez, Thibault Latrille, Marina Brasó-Vives, and Arcadi Navarro

Inferring Long-Term Effective Population Size with Mutation-**Selection Models** 

Thibault Latrille (),\*<sup>,1,2</sup> Vincent Lanore,<sup>1</sup> and Nicolas Lartillot<sup>1</sup>

Ambizione proposal



### **Theoretical models**

Contrast Across Evolutionary Scales Latrille Thibault

Estimating the proportion of beneficial mutations that are not adaptive in

This article is a preprint

### Detecting diversifying selection for a trait from within and between-species genotypes and phenotypes

## An Improved Codon Modeling Approach for Accurate

### Quantifying the impact of changes in effective population size and expression level on the rate of coding sequence evolution





# Can we predict the rate of protein evolution?



# Part I

Latrille Thibault Contrast Across Evolutionary Scales





## How to quantify changes in protein evolution? With both synonymous and non-synonymous substitutions.



# selection and drift.

• Synonymous substitutions are considered selectively neutral, reflecting the mutational processes.

Ambizione proposal

• Non-synonymous substitutions are reflecting the effect of mutation,

King & Jukes (1969); Kimura (1983); Goldman & Yang (1994); Muse & Gaut (1994).

Latrille Thibault Contrast Across Evolutionary Scales



Ambizione proposal

Contrast Across Evolutionary Scales Latrille Thibault

### μ

**Mutation rates** between nucleotides

> $\boldsymbol{\omega}$  can be interpreted as the average fixation probability of non-synonymous mutations, relative to neutral mutations.

## What are the predictors of ω? Few genes/sites under adaptation ( $\omega > 1$ ), a majority are constrained ( $\omega < 1$ ).



**Protein is under adaptation** 

- A very few genes have  $\omega > 1$ . Kosiol *et al* (2008).
- But we can detect sites with  $\omega > 1$ . Nieslen & Yang (1998); Enard *et al* (2016).
- Some branches can have a transient  $\omega > 1$ . Yang & Nielsen (1998); Zhang & Nielsen (2005).

**Protein is constrained** 

- Lower  $\omega$  for highly expressed proteins. Drummond (2005); Zhang & Yang (2015).
- Lower  $\omega$  for buried sites inside a protein. Ramsey et al (2011); Echave et al (2016).
- Popadin *et al* (2007); Lanfear et al (2010).

Contrast Across Evolutionary Scales Latrille Thibault

• Lower  $\omega$  for short-lived and smaller species.

# Is effective population size $(N_{a})$ predicting $\omega$ ? Higher N results in lower $\omega$ due to better efficacy of selection (r=-0.58).



Ambizione proposal



0 Myr

Contrast Across Evolutionary Scales Latrille Thibault

## Can we theoretically use $\omega$ to predict $N_{a}$ ? Not directly because the relationship depends on the model of protein evolution.



Ambizione proposal

Contrast Across Evolutionary Scales Latrille Thibault

### Latrille *et al.* (2021)

## What is the expected relationship between $\omega$ and $N_{s}$ ? (1/4) We first need to define a genotype-phenotype-fitness relationship.

![](_page_8_Figure_1.jpeg)

Ambizione proposal

Miyazawa and Jernigan (1985), Williams et al (2006), Goldstein (2011), Pollock et al (2012)

Latrille Thibault Contrast Across Evolutionary Scales

![](_page_8_Picture_5.jpeg)

## What is the expected relationship between $\omega$ and $N_{2}$ ? (2/4) Then we need to find the equilibrium and $\omega$ at this equilibrium.

![](_page_9_Figure_1.jpeg)

• The optimal stability of proteins is never achieved.

• Marginal stability is the default expectation of the mutation-selection balance even under directional selection for stability.

Ambizione proposal

Latrille Thibault Contrast Across Evolutionary Scales

Taverna & Goldstein (2002)

p. 11

## What is the expected relationship between $\omega$ and N<sup>2</sup> (3/4) Then we derive how changes in N<sub>a</sub> shift the equilibrium.

![](_page_10_Figure_1.jpeg)

• We can then derive the relationship between  $N_e$  and  $\omega$  as a function of the microscopic molecular parameters of the model.

Ambizione proposal

• Selection coefficient is dependent on the position in the fitness landscape.

Latrille Thibault Contrast Across Evolutionary Scales

![](_page_10_Picture_7.jpeg)

Cherry (1998); Goldstein (2013).

# What is the expected relationship between $\omega$ and $N_{s}$ ? (4/4) Negative linear relationship between $\omega$ and $\log(N)$ .

### Given:

- T the temperature.
- *n* the number of sites in the protein.
- $\Delta\Delta G > 0$  the destabilizing effect of a mutation.
- x the proportion of destabilizing sites (phenotype).
- f(x) the phenotype-fitness map.
- $x^*$  the equilibrium of x.

The response in  $\omega$  after a change in  $N_{\rm e}$  is:

$$\frac{\mathrm{d}\omega}{\mathrm{d}\ln(N_{\mathrm{e}})} \simeq -\frac{\frac{\partial \ln f(x^{*})}{\partial x^{*}}}{\frac{\partial^{2} \ln f(x^{*})}{\partial x^{*2}}} \simeq$$

### Ambizione proposal

![](_page_11_Figure_11.jpeg)

Contrast Across Evolutionary Scales Latrille Thibault

![](_page_11_Picture_13.jpeg)

Latrille & Lartillot (2021)

## What is the relationship between $\omega$ and expression level? Negative linear relationship between $\omega$ and log of expression level.

### If misfolded proteins are toxic, the decrease in fitness is proportional to protein expression level.

![](_page_12_Figure_2.jpeg)

- *n* the number of sites in the protein.
- $\Delta\Delta G > 0$  the destabilizing effect of a mutation.
- x the proportion of destabilizing sites (phenotype).
- f(x) the phenotype-fitness map.
- $x^*$  the equilibrium of x.

The response in  $\omega$  after a change in protein expression

$$\frac{\mathrm{d}\omega}{\mathrm{d}\ln(y)} \simeq -\frac{\frac{\partial \ln f(x^*)}{\partial x^*}}{\frac{\partial^2 \ln f(x^*)}{\partial x^{*2}}} \simeq$$

### Ambizione proposal

![](_page_12_Figure_11.jpeg)

Contrast Across Evolutionary Scales Latrille Thibault

Latrille & Lartillot (2021)

## Can theoretical models of protein folding predict rate of evolution? Models form a bridge across different scales and can be tested.

![](_page_13_Picture_1.jpeg)

Ambizione proposal

![](_page_13_Figure_3.jpeg)

Contrast Across Evolutionary Scales Latrille Thibault

# Can we predict the rate of protein evolution $(\omega)$ ?

## • With a theoretical model for selection on protein folding, $\boldsymbol{\omega}$ is linearly decreasing with $N_{\rho}$ and expression level (on log scale).

## • This model forms a bridge across different scales and can be tested.

Ambizione proposal

# Chapter I

## • In our model, there is no adaptation possible, $\omega$ is alway <1.

### How to detect adaptation when proteins are generally constrained?

Quantifying the impact of changes in effective population size and expression level on the rate of coding sequence evolution

T. Latrille<sup>a,b,\*</sup>, N. Lartillot<sup>a</sup>

Contrast Across Evolutionary Scales Latrille Thibault