Modélisation de l'articulation des mécanismes sélectifs et neutres dans l'évolution des séquences d'ADN codant pour des protéines

CC-BY-SA 2020

30 Novembre 2020 Thibault Latrille

• Nicolas LARTILLOT, Directeur de recherche, CNRS/LBBE (Lyon) • Céline BROCHIER-ARMANET, Professeure, Université Claude Bernard Lyon 1 • Julien Yann DUTHEIL, Research Group Leader, Max Planck Institute (Allemagne) • Richard GOLDSTEIN, Professeur, University College London (Royaume-Uni) • Carina Farah MUGAL, Chercheure, Uppsala University (Suède)

Modelling the interplay between selective and neutral mechanisms in the evolution of protein-coding DNA sequences

- I. Inferring mutation in presence of selection
- II. Inferring genetic drift in presence of mutation and selection
- **III.** Rate of evolution as a function of genetic drift

Conclusion

CC-BY-SA 2020

Introduction: dissecting the thesis title

Latrille Thibault Selective and neutral evolution

• The introduction will consist in dissecting the title of this thesis, bottom up.

CC-BY-SA 2020

Introduction

Modelling the interplay between selective and neutral mechanisms in the evolution of protein-coding DNA sequences.

CC-BY-SA 2020

Protein-coding DNA sequences

ATC CTC

		T		С		Α		G	1
,	TTT TTC	Phenylalanine (Phe/P)	TCT TCC		TAT TAC	Tyrosine (Tyr/Y)	TGT TGC	Cysteine (Cys/C)	T C
	TTA TTG		TCA TCG	Serine (Ser/S)	TAA TAG	Stop (Ochre) Stop (Amber)	TGA TGG	Stop (Opal) Tryptophan (Trp/W)	A G
1	CTT CTC	Leucine (Leu/L)	CCT CCC	Proline (Pro/P)	CAT CAC	Histidine (His/H)	CGT CGC	Arginine (Arg/R)	T C
	CTA CTG		CCA CCG		CAA CAG	Glutamine (Gln/Q)	CGA CGG		A G
	ATT ATC	Isoleucine (Ile/I)	ACT ACC	Threonine (Thr/T)	AAT AAC	Asparagine (Asn/N)	AGT AGC	Serine (Ser/S)	T C
	ATA ATG	Methionine (Met/M)	ACA ACG		AAAAAG	Lysine (Lys/K)	AGA AGG	Arginine (Arg/R)	A G
Ţ	GTT GTC	GTT GTC GTA GTG	GCT GCC	Λ longing $(\Lambda \log / \Lambda)$	GAT GAC	Aspartic acid (Asp/D)	GGT GGC	Olucino (Olu / O)	T C
	GTA GTG		GCA GCG	Alannie (Ala/A)	GAA GAG	Glutamic acid (Glu/E)	GGA GGG	Glychne (Gly/G)	A G
		Go	noti	r rodo tah		4^3-64 codor	16)		

Generic coue table (4 - 04 couolis)

Methionine | Leucine | ... | Leucine | Alanin

Franklin & Gosling (1953); Watson & Crick (1953); Wilkins et al (1953); Crick (1958); Crick (1970).

Latrille Thibault Selective and neutral evolution

DNA mutations change the protein, or not.

(Phe) TTC (Leu) CTC ← (Val) GTC ≮

	Т		С		Α		G]
	TTT	Phenylalanine (Phe/P)	TCT	Serine (Ser/S)	TAT	Tyrosine (Tyr/Y)	TGT	Cysteine (Cys/C)	Т
Т	TTA		TCA		TAC	Stop (Ochre)	TGA	Stop (Opal)	A
	TTG		TCG		TAG	Stop (Amber)	TGG	Tryptophan (Trp/W)	G
	CTT	Leucine (Leu/L)	CCT	Proline (Pro/P)	CAT	Histidine (His/H)	CGT	Arginine (Arg/R) Serine (Ser/S) Arginine (Arg/R)	Т
\mathbf{C}	CTC		CCC		CAC		CGC		С
	CTA		CCA		CAA	Glutamine (Gln/Q)	CGA		A
	CTG		CCG		CAG		CGG		G
	ATT	Isoleucine (Ile/I)	ACT	Threonine (Thr/T)	AAT	Asparagine (Asn/N)	AGT		T
A	ATC		ACC		AAC		AGC		C
	ATA		ACA		AAA	Lysine (Lys/K)	AGA		
	ATG	Methionine (Met/M)	ACG		AAG		AGG		G
	GTT	Valine (Val/V)	GCT	$\Lambda \ln n \ln n (\Lambda \ln / \Lambda)$	GAT	Aspartic acid (Asp/D)	GGT	Glycine (Gly/G)	Т
G	GTC		GCC		GAC	Aspartic acid (Asp/D)	GGC		С
	GTA		GCA	Alainne (Ala/A)	GAA	Glutamic acid (Glu/E)	GGA		Α
	GTG		GCG		GAG		GGG		G

CC-BY-SA 2020

• Non-synonymous mutations change the protein.

• Synonymous mutations do not change the protein.

Evolution of protein-coding DNA sequences

CC-BY-SA 2020

Protein coding DNA alignment ATG|GGA|TCC|ATG|CTA|CGA|TCG ATG|CGA|TCC|ATG|GTA|CGA|TCG >>>> ATG|CGA|TCG|AAG|CTT|CGA|TCC ATG|CGA|TAG|AAG|CTT|CGA|TCG ATG|CGA|TCG|ATC|CAT|CGA|TCG

Conserved sites

Variables sites

• Sequences from the same gene in different species are aligned.

Latrille Thibault Selective and neutral evolution

Zuckerland & Pauling (1995).

History of substitutions along the species tree

CC-BY-SA 2020

Protein coding DNA alignment ATG|GGA|TCC|ATG|CTA|CGA|TCG ATG|CGA|TCC|ATG|GTA|CGA|TCG ATG|CGA|TCG|AAG|CTT|CGA|TCC

- ATG|CGA|TCG|ATC|CAT|CGA|TCG
- Differences correspond to point substitution events happening in the ancestral branches

Latrille Thibault Selective and neutral evolution

Felsenstein (1981).

History of substitutions along the species tree

CC-BY-SA 2020

Protein coding DNA alignment ATG|GGA|TCC|ATG|CTA|CGA|TCG ATG|CGA|TCC|ATG|GTA|CGA|TCG ATG|CGA|TCG|AAG|CTT|CGA|TCC ATG|CGA|TAG|AAG|CTT|CGA|TCG

ATG|CGA|TCG|ATC|CAT|CGA|TCG

• A substitution is a mutation that reached fixation in the population.

• If alleles are neutral (no selection), the substitution rate is equal to the underlying mutation rate.

• For alleles under selection, what determines their substitution rate?

Felsenstein (1981); Kimura (1983); Ohta (1992).

8/50

• Stronger negative selection coefficient results in a decrease of the fixation probability. • Effective population size (N_{a}) acts as a magnifier of selection.

Latrille Thibault Selective and neutral evolution

https://github.com/ThibaultLatrille/WrightFisher

Codon models take advantage of the genetic code

selection and drift.

CC-BY-SA 2020

• Synonymous substitutions are considered selectively neutral, reflecting the mutational processes.

• Contrasting non-synonymous and synonymous substitution rates allows estimating the strength of selection exercised on proteins.

• Non-synonymous substitutions are reflecting the effect of mutation,

King & Jukes (1969); Kimura (1983); Goldman & Yang (1994); Muse & Gaut (1994).

Latrille Thibault Selective and neutral evolution

ω-based phylogenetic codon models • $Q_{i,j}$ is the substitution rate from codon *i* to *j*.

CC-BY-SA 2020

 $\begin{cases} Q_{i,j} = \mu_{i,j} \text{ if codons } i \text{ and } j \text{ are synonymous} \\ Q_{i,j} = \omega \mu_{i,j} \text{ if codon } i \text{ and } j \text{ are non-synonymous.} \end{cases}$

Latrille Thibault Selective and neutral evolution

$\mu_{i,j}$

Mutation rates between nucleotides

• ω can be interpreted as the average fixation probability of non-synonymous mutations, relative to neutral mutations.

ω-based phylogenetic codon models

- Detecting fast evolving genes.
- \rightarrow Kosiol *et al* (2008).
- Detecting rapidly changing sites.
- Decting burst of evolution.

CC-BY-SA 2020

Mutation-selection phylogenetic codon models

• $Q_{i,j}$ is the substitution rate from codon *i* to *j*.

CC-BY-SA 2020

• Selection on non-synonymous mutations depends on the local physico-chemical properties of amino acids involved in the mutation.

• Positive selection in one direction is balanced by purifying selection in the opposite direction.

Mutation-selection phylogenetic codon models

- at mutation-selection balance.
- Detecting convergent evolution. \rightarrow Parto & Lartillot (2017).

CC-BY-SA 2020

• Estimating fitness profiles inside a protein. \rightarrow Halpern & Bruno (1998); Rodrigue *et al* (2010); Tamuri & Goldstein (2012).

• Probability of fixation of non-synonymous mutation induced by the model \rightarrow Spielman & Wilke (2015); Dos Reis (2015), Jones *et al* (2016).

• Nearly-neutral model for more sensitive tests of positive selection. \rightarrow Rodrigue & Lartillot (2016); Bloom (2016); Rodrigue *et al* (2020).

Can mutation, selection and genetic drift be disentangled with phylogenetic codon models?

Simulations

CC-BY-SA 2020

Substitutions are the result of the interplay between: • Mutations (creation of new variants) • Selection (filtering variants) • Genetic drift (amount of randomness)

Latrille Thibault Selective and neutral evolution

Empirical analyses

CC-BY-SA 2020

Part I. Can *w*-based codon models disentangle mutation and selection?

Mutation and selection are modelled separately in ω -based codon models

- gene, or a given site.
- selection at the level of amino-acids.

CC-BY-SA 2020

• ω -based codon models estimates the strength of selection for a given

• These models seek to capture mutation at the level of nucleotide and

• Can ω -based codon models disentangle mutation and selection?

Goldman & Yang (1994); Muse & Gaut (1994); Singler & Hickey (2008); Rodrigue et al (2008). Latrille Thibault Selective and neutral evolution 17/50

(1)

Scaling factor on non-synonymous substitutions

Observed bias in the nucleotide composition is weaker than the underlying mutational bias

CC-BY-SA 2020

Latrille Thibault Selective and neutral evolution

https://github.com/ThibaultLatrille/NucleotideBias

ω-based codon models do not reliably estimate the mutational bias

CC-BY-SA 2020

Latrille Thibault Selective and neutral evolution

https://github.com/ThibaultLatrille/NucleotideBias

Selection is opposed to the mutational bias

CC-BY-SA 2020

Latrille Thibault Selective and neutral evolution

Modelling selection in different directions allows to infer reliably the mutation biases.

Empirical experiments

<i>Influenza</i> Nucleoprotein 498 sites, 180 strains	<i>E-coli</i> Lactamase 263 sites, 85 strains
λ =1.39	λ =0.85
ω =0.085	ω =0.29

$$\begin{aligned} \widehat{\lambda} = 1.64 & \widehat{\lambda} = 0.68 \\ \widehat{\omega} = 0.086 & \widehat{\omega} = 0.30 \\ \widehat{\omega}_{AT \to GC} = 0.14 & \widehat{\omega}_{AT \to GC} = 0.31 \\ \widehat{\omega}_{GC \to AT} = 0.10 & \widehat{\omega}_{GC \to AT} = 0.44 \\ \widehat{\omega}_{AT \to GC} / \widehat{\omega}_{GC \to AT} = 1.36 & \widehat{\omega}_{AT \to GC} / \widehat{\omega}_{GC \to AT} = 0.71 \end{aligned}$$

CC-BY-SA 2020

Latrille Thibault Selective and neutral evolution

Simulated experiments

https://github.com/ThibaultLatrille/NucleotideBias

Can *w*-based codon models disentangle mutation and selection?

do not reliably estimate mutational biases.

direction.

direction.

mutation and selection reliably.

CC-BY-SA 2020

- ω -based codon models with a single parameter of selection
- Mutational bias is balanced by a fixation bias (selection) in the opposite
- Inference of mutational bias requires to model fixation bias in different
- Estimation of GC-biased gene conversion requires to disentangle

CC-BY-SA 2020

Part II. Can mutation-selection codon models estimate variations in N_e along the phylogeny?

Can ω -based codon models estimate variations in N_e along the phylogeny?

• ω is used as a proxy for N_{e} in phylogenetic analyses.

• Used to relate N_e to species life-history traits (longevity, maturity, weight, body size, ...) and ecological traits (habitat, ...).

• Mutation-selection codon models can be parameterized directly with N_{e} , allowing to revisit these studies.

Popadin *et al* (2007); Lanfear *et al* (2010); Lartillot & Poujol (2011); Lartillot & Delsuc (2012); Romigiuer *et al* (2014); Galtier (2016). Latrille Thibault Selective and neutral evolution 24/50

CC-BY-SA 2020

Current mutation-selection codon models assume a constant N_{ρ} along the phylogeny

CC-BY-SA 2020

• Selection is heterogeneous between amino acids and along the sequence.

• N is considered fixed along the different lineages.

Halpern & Bruno (1998); Rodrique et al (2010); Rodrigue & Lartillot (2014); Tamuri et al (2014). Latrille Thibault Selective and neutral evolution 25/50

Site-specific amino-acid fitness profiles

 Mutation-selection codon model that estimates selection along the **DNA** sequence, and N_{ρ} along the branches of the tree.

CC-BY-SA 2020

Latrille Thibault Selective and neutral evolution

https://github.com/bayesiancook/bayescode

CC-BY-SA 2020

Input and ouput of the Bayesian framework

Latrille Thibault Selective and neutral evolution

https://github.com/bayesiancook/bayescode

Reconstructing long term changes of N_e in mammals

CC-BY-SA 2020

lrichechus_manatus_latiro	OSTIIS	
Lovodonta ofricana		
Nrycteropus afer afer	N N	
Flenhantulus edwardii	Afrotheria	
Echinops telfairi		
Dasypus novemcinctus		
Choloepus hoffmanni 🔊	Xenarthra	
Sorex araneus		
Erinaceus europaeus 🛛 😓	Eulipotyphla	
Condylura cristata		
Rousettus aegyptiacus		
Pteropus_vampyrus		
Rhinolophus_sinicus	Chirontera	
Hipposideros_armiger	Chiloptera	
Miniopterus_natalensis		
Myotis_lucifugus		
Eptesicus_fuscus		
Equus_caballus 🦷	Perissodactyla	
Ceratotherium_simum_simum	n	
Comolug hostrionus	Camelidae	
Sug acrofo	Suidao	
Odocoilous virginianus to	Juluae	
	Exallus	
 Ovis aries	Pecora	
Capra hircus		
Physeter catodon		
Lipotes vexillifer		
Tursiops truncatus	Cetacea	
Orcinus orca		
Delphinapterus leucas	•	
Balaenoptera_acutorostrat	ta_scammoni	
Canis_familiaris	K	
Ursus_maritimus m		
Alluropoda_melanoleuca	a .	
Mustela_putorius	Carnivora	
Panthera pardus		
Acinonyx jubatus		
Felis catus		
Tupaia belangeri	Scandentia	
Oryctolagus_cuniculus 🖕		
Ochotona_princeps 🍡 🏲	Lagomorpha	
Marmota_marmota_marmota		
Ictidomys_tridecemlineatu	15 J.	
Uctodon_degus		
Chinchilla_lanigera		
Lavia_porcellus		
	_	
Battus norvegicus	Rodentia	
	~	
Meriones unguiculatus		
Peromyscus maniculatus		
Microtus ochrogaster		
Mesocricetus_auratus		
Dipodomys_ordii 🛛 🗖	1	
Castor_canadensis	•	
Otolemur_garnettii 🤇	Stronginghini	
Propithecus_coquereli 🛒	Strepsirmini	
Microcebus_murinus		
Nomascus_leucogenys		
Pongo_abelli		
Homo sapions		
Gorilla gorilla		
Chlorocebus sabaeus	• •	
Macaca mulatta		
Papio anubis		
Mandrillus_leucophaeus	O	
Cercocebus_atys	Simiitormes	
Colobus_angolensis		
Colobus_angolensis Saimiri_boliviensis		
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus	19	
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus Callithrix_jacchus	3	
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus Callithrix_jacchus Aotus_nancymaae	3	
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus Callithrix_jacchus Aotus_nancymaae		
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus Callithrix_jacchus Aotus_nancymaae	3	
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus Callithrix_jacchus Aotus_nancymaae	•	
Colobus_angolensis Saimiri_boliviensis Cebus_capucinus Callithrix_jacchus Aotus_nancymaae	3	102

Latrille Thibault Selective and neutral evolution

0.3 106 10^{4} Adult weight (g)

https://github.com/ThibaultLatrille/MutationSelectionDrift

CC-BY-SA 2020

Estimated N_{a} is related to life-history traits in mammals

Latrille Thibault Selective and neutral evolution

Estimated N_o is related to ecological traits in isopods

https://github.com/ThibaultLatrille/MutationSelectionDrift

CC-BY-SA 2020

Habitat

Capderrey et al (2013); Eme et al (2013); Saclier et al (2018)

Latrille Thibault Selective and neutral evolution

Habitat

Surface Underground

Estimated N_e is lower for underground species.

• The magnitude of estimated changes in N_e is low.

Validating the inference model against simulated alignments

CC-BY-SA 2020

Simulation along the phylogeny

ATG|GGA|TCC|ATG|CTA|CGA|TCG ATG|CGA|TCC|ATG|GTA|CGA|TCG ATG|CGA|TCG|AAG|CTT|CGA|TCC ATG|CGA|TAG|AAG|CTT|CGA|TCG ATG|CGA|TCG|ATC|CAT|CGA|TCG

Comparing inference and simulation

N cannot be realiably estimated in the presence of epistasis

CC-BY-SA 2020

Site-specific amino-acid fitness profiles

Increased epistatic interactions between sites

Harder to estimate the underlying population size (N_{ρ})

Latrille Thibault Selective and neutral evolution

https://github.com/ThibaultLatrille/MutationSelectionDrift

Can mutation-selection codon models estimate changes in N_e along the phylogeny?

- In mammals, estimated N_e correlates negatively with longevity, weight and maturity, and positively with mutation rate.
- In isopods, underground lineages have a lower estimated N_e .
- The changes in N_e along lineages are in the expected direction, but the range of estimated N_e is lower than expected.
- Which mechanism could explain such a low variance of N_e estimated in empirical data?
- Epistasis appears to be a reasonable explanation.

CC-BY-SA 2020

Can the relationship between ω and N_e be derived generally at mutation-selection balance?

CC-BY-SA 2020

Relationship between ω and N_{α}

fitness determined by protein stability?

CC-BY-SA 2020

• Can we determine the relationship between ω and N_e in the case of

Spielman & Wilke (2015); Dos Reis (2015), Jones et al (2016)

35/50

CC-BY-SA 2020

• Free energy of is computed using the 3D conformations and pairwise contact potential energies between neighboring amino-acid residues.

Fitness as the proportion of folded proteins

 β is the inverse of the temperature ($\beta = 1/T$)

Miyazawa and Jernigan (1985), Williams et al (2006), Goldstein (2011), Pollock et al (2012) Latrille Thibault Selective and neutral evolution 36/50

Proteins are marginally stable at mutation-selection balance

CC-BY-SA 2020

• Marginal stability is the default expectation of the mutation-selection balance even under directional selection for stability.

• The optimal stability of proteins is never achieved.

Latrille Thibault Selective and neutral evolution

Taverna & Goldstein (2002

Equilibrium response to a change in N

- then ω is independent of N_{α} .
- molecular parameters of the model?

CC-BY-SA 2020

• If the distribution of phenotypic changes is independent of the underlying phenotype,

• Can we derive the relationship between N_{a} and ω as a function of the microscopic

Latrille Thibault Selective and neutral evolution

Cherry (1998); Goldstein (2013).

1D linear model of protein stability

• *n* is the number of sites in the protein. • β is the temperature (equals to 1.686 mol/kcal at 25°C). • $\Delta\Delta G > 0$ (in kcal/mol) is the expected change in free energy (between folded and unfolded states) for a destabilizing mutation.

- What is the resulting ω ?

CC-BY-SA 2020

• What is the equilibrium phenotype at mutation-selection balance?

Stable protein

What is the phenotype at equilibrium?

Latrille Thibault Selective and neutral evolution

Unstable protein

At equilibrium (x^*) , the response in ω to changes in N_e is:

CC-BY-SA 2020

• *n* is the number of sites in the protein. • β is the temperature (equals to 1.686 mol/kcal at 25°C). • $\Delta\Delta G > 0$ (in kcal/mol) is the expected change in free energy (between folded and unfolded states) for a destabilizing mutation.

ω as a function of N_{α}

https://github.com/ThibaultLatrille/GenotypePhenotypeFitness

Latrille Thibault Selective and neutral evolution

ω as a function of protein expression level (y)

- If misfolded proteins are toxic, the decrease in fitness is proportional to the number of misfolded proteins.
- Hence, the decrease in fitness is proportional to protein expression level (y).
- As a result, selective pressure is proportional to both $N_{\rm e}$ and y. The response in ω to changes in protein expression level (y) is also:

CC-BY-SA 2020

$$rac{\mathrm{d}\omega}{\mathrm{ln}(y)}\simeq rac{\mathrm{d}\omega}{\mathrm{d}\ln(N_{\mathrm{e}})}\simeq -rac{1}{eta n\Delta G}$$

Confirmation of the theoretical results with simulations

CC-BY-SA 2020

• Parameters are $\Delta G_{\min} = -118$, $\Delta \Delta G = 1$, n = 300, $\beta = 1.686$. • Theoretical slope is -0.00198 and observed is -0.00126

https://github.com/ThibaultLatrille/GenotypePhenotypeFitness

45/50

Interpreting theoretical results in the light of empirical data

- interactions.

CC-BY-SA 2020

ω function of <i>N_e</i> (diversity estimate) in primates	 ω function of expression level in different Archaea & Bacteria 	ω exp i
$\frac{\mathrm{d}\omega}{\mathrm{d}\ln(N_{\rm e})}$	$\frac{\mathrm{d}\omega}{\mathrm{d}\ln(y)}$	
-0.04	[-0.046; -0.021]	[—0

• Weak predicted linear response of ω to changes in either $N_{\rm e}$ or expression level. • Models based on the probability of folding are at odds with empirically results. • Other aspects of protein biophysics could be explored such as protein-protein

> Zeldovich et al (2007), Goldstein (2013), Zhang & Yang (2015), Brevet & Lartillot (2020). Latrille Thibault Selective and neutral evolution 46/50

CC-BY-SA 2020

V. Conclusion

Modelling the interplay between selective and neutral mechanisms

- \rightarrow No, if a single ω .
- \rightarrow Yes, if ω in different directions.
- $\rightarrow N_{a}$ estimation in the right direction. mis-specification of the mutation-selection model.

• Can ω -based codon models disentangle mutation and selection?

• Can mutation-selection codon models estimate changes in N_e along the phylogeny?

 \rightarrow The magnitude of estimated N_e is lower than expected, probably due to

• Can the response ω to changes in N_{e} be derived generally at mutation-selection balance? \rightarrow Yes, under a linear 1D model of fitness based on protein stability. \rightarrow Weaker dependency of ω to changes in N_e as the number of sites increases. \rightarrow Response of ω to changes in N_{ρ} and protein expression level is equal.

• Mechanistic mutation-selection codon models are complex and heavily parameterized, but are still relying on strong assumptions broken in practice.

• Phenomenological models (ω -based) are more easily fitted to the data, but require careful definition and parameterization.

• Aggregate parameters (ω) can be derived out of population-genetic (N_{ρ}) and molecular parameters ($\Delta\Delta G$, β ...).

CC-BY-SA 2020

Inference framework

Thank you

Advisor

Nicolas Lartillot

PhD committee

Céline Brochier-Armanet Julien Yann Dutheil **Richard Goldstein** Carina Farah Mugal

PhD guides

Benoit Nabholz Christophe Douady Tristan Lefébure Laurent Gueguen Laurent Duret Nicolas Rodrigue

LBBEers

Anamaria Necsulea Damien de Vienne **Dominique Mouchiroud** Hélène Badouin Annabelle Haudry Bastien Boussau Éric Tannier Vincent Daubin

• • •

Teachers

Marie Sémon Carine Rey **Corentin Dechaut** Vincent Lacroix **Arnaud Mary** Catherine Moulia • • •

IT team

Bruno Spataro Stéphane Delmotte Simon Penel Adil El Filali Vincent Miele Aurélie Siberchicot Philippe Veber

The A team

Nathalie Arbasetti **Odile Mulet-Marquis** Laetitia Catouaria Aurélie Zerfass

The nest

Judith Estrada Meza Eric & Anne Iris, Myriam & Samuel Lamonerie & Latrille

...

CC-BY-SA 2020

Migrating finches

Adaptive

peak

Markov chain

Fitness valley

Wandrille Duchemin Adrián Arellano Davín Aline Muyle Héloïse Phillippon Pierre Garcia Monique Aouad Anne Oudard Frédéric Jauffrit Maud Gautier **Samuel Barreto** Vincent Lanore François Gindraud Diego Hartasánchez Frenk $\bullet \bullet \bullet$

Finches

Florian Bénitière Alexandre Laverré Alexia Nguyen Trung Djivan Prentout Théo Tricou Marina Brasó Vives **Claire Gayral** Hugo Menet Louis Duchemin Antoine Villié Alice Genestier Julien Joseph Elise Say-Sallaz ...

To all who shared this adventure Covid storm PhD defense pass Driftbarri Submission slope Judith Angelica blossom tree ANT RESERVE Mount Fuji Performance Coding peak ~ toolchain Empirical data Simulation plateau swamp Peer-coding shelter Reproducibility pass Caves of spurious ideas Master's degree package Teaching workfields Bibliography deep forest Micolas' map 50/50