An improved codon modeling approach for accurate estimation of the mutation bias

SMBE everywhere 2022 **GS3:** Mutational Biases and Adaptation August 2, 2022

UNIL | Université de Lausanne

T. Latrille^{1,2}, **N.** Lartillot² ¹Université de Lausanne (Switzerland) ²Université de Lyon (France)

Département de Biologie Computationnelle

thibault.latrille@unil.ch

1/16

I. Can codon models accurately estimate selection? II. Can codon models accurately estimate mutation? III. Can codon models disentangle mutation and selection?

Codon models take advantage of the genetic code

• Contrasting non-synonymous and synonymous substitution rates allows estimating the strength of selection exercised on proteins.

• Non-synonymous substitutions are reflecting the effect of mutation, selection and drift.

• Synonymous substitutions are considered selectively neutral, reflecting the mutational processes.

King & Jukes (1969); Kimura (1983); Goldman & Yang (1994); Muse & Gaut (1994). Latrille Thibault Mutational bias 3/16

Scaling factor exerced on non-synonymous mutations

• ω can be interpreted as the average fixation probability of non-synonymous mutations, relative to neutral mutations.

Phylogenetic codon models

• $Q_{i,j}$ is the substitution rate from codon *i* to *j*.

 $= \mu_{i,j} \text{ if codons } i \text{ and } j \text{ are synonymous}$ $= \omega \mu_{i,j} \text{ if codon } i \text{ and } j \text{ are non-synonymous.}$

ω

Goldman & Yang (1994); Muse & Gaut (1994); Rodrigue et al (2008).

4/16

Latrille Thibault

Mutational bias

$\mu_{i,j}$

Mutation rates between nucleotides

• Detecting fast evolving genes.

- \rightarrow Kosiol *et al* (2008).
- Detecting rapidly changing sites.
- \rightarrow Nieslen & Yang (1998); Enard *et al* (2016).
- Decting burst of evolution.
- \rightarrow Yang & Nielsen (1998); Zhang & Nielsen (2005).

Phylogenetic codon models

Latrille Thibault

Mutational bias

• Stronger selection for highly expressed proteins. \rightarrow Drummond (2005); Zhang & Yang (2015). • More constrains for buried sites inside a protein. • Weaker selection for long-lived and bigger species.

Mutation and selection are modelled separately in codon models

the level of amino-acids.

• Codon models seek to capture mutation at the level of nucleotide and selection at

Can codon models disentangle mutation and selection?

Mutational bias Latrille Thibault

ω

Scaling factor on non-synonymous substitutions

Part I. Can codon models accurately estimate selection?

Muse & Gaut codon model reliably estimate selection

the underlying mutation bias.

• The Muse & Gaut (MG) model is the most accurate to infer selection.

• MG model predicts that the observed bias in nucleotide composition is equal to

Spielman & Wilke (2015) - The relationship between dNdS and scaled selection coefficients - MBE Latrille Thibault Mutational bias 8/16

Observed bias in the nucleotide composition is not the underlying mutation bias

- 0.9
- 0.8
- 0.7
 - 0.6
 - 0.5
 - 0.4
 - 0.3
 - 0.2
 - 0.1

 - 0

• Then, how does the MG model performs under a mutation bias?

Singer and Hickey (200) - Nucleotide bias causes a genomewide bias in the amino-acid composition of proteins - MBE Latrille Thibault Mutational bias 9/16

Part II. Can codon models accurately estimate mutation?

Codon models do not accurately estimate the mutation bias

Latrille & Lartillot (2022) - An improved codon modeling approach for accurate estimation of mutation bias - MBE Latrille Thibault Mutational bias 11/16

• Codon models struggle between true mutation bias and observed bias in nucleotide composition.

Part III. Can we construct codon models to disentangle mutation and selection?

Codon positions have different biases in observed nucleotide compositions

Latrille & Lartillot (2022) - An improved codon modeling approach for accurate estimation of mutation bias - MBE Latrille Thibault Mutational bias 13/16

• Are mutation selected in different direction?

Site-specific amino-acid

Cartoon representation.

Simulations, 5000 sites and 498 species.

• We need codon models with selection in different directions.

Latrille & Lartillot (2022) - An improved codon modeling approach for accurate estimation of mutation bias - MBE Latrille Thibault Mutational bias 14/16

Selection is opposed to the mutational bias

Modelling selection in different directions allows to accurately infer mutation biases

Empirical experiments

<i>Influenza</i> Nucleoprotein 498 sites, 180 strains	<i>E-coli</i> Lactamase 263 sites, 85 strains
λ =1.39	λ =0.85
ω =0.085	ω =0.29

$$\begin{aligned} \widehat{\lambda} = 1.64 & \widehat{\lambda} = 0.68 \\ \widehat{\omega} = 0.086 & \widehat{\omega} = 0.30 \\ \widehat{\omega}_{AT \to GC} = 0.14 & \widehat{\omega}_{AT \to GC} = 0.31 \\ \widehat{\omega}_{GC \to AT} = 0.10 & \widehat{\omega}_{GC \to AT} = 0.44 \\ \widehat{\omega}_{AT \to GC} / \widehat{\omega}_{GC \to AT} = 1.36 & \widehat{\omega}_{AT \to GC} / \widehat{\omega}_{GC \to AT} = 0.71 \end{aligned}$$

Latrille & Lartillot (2022) - An improved codon modeling approach for accurate estimation of mutation bias - MBE Latrille Thibault Mutational bias 15/16

Simulated experiments

- although it does not reliably estimate mutational biases.

- Should not be confused with GC-biased gene conversion.

Conclusion

• Muse & Gaut codon model with a single parameter of selection is accurate,

• Muse & Gaut codon model should be used to estimate selection.

• Mutational bias is balanced by a fixation bias (selection) in the opposite direction.

• Inference of mutational bias requires to model fixation bias in different directions.

• How can we measure the load generated by mutation bias and GC-biased gene conversion?

