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From the discovery of evolution to today’s knowledge, the understanding of the mech-

anisms by which the diversity and the complexity of living forms emerge has seen dramatic

changes and has gone through several scientific revolutions. Molecular evolutionary sci-

ences represent one such revolution, a relatively recent scientific development emerging

at the crossroads of two scientific fields. On the one hand, evolutionary biology, which

has seen tremendous theoretical development in the nineteenth and twentieth centuries.

On the other hand, molecular biology, which recruited the advances in biochemistry over

the 20th century and has seen many technical revolutions over this time. Being both

empirical and theoretical, molecular evolution borrows strength simultaneously from the

ever-increasing amount of empirical data available in molecular biology and from the pre-

dictive power of theoretical evolutionary biology. From the differences in the observed

molecular sequences between individuals of the same population, or between species,

biologists can uncover the processes generating this diversity, and unravel the forces gov-

erning the underlying evolutionary mechanisms. Can we quantify the relative strength

of these forces, shaping both extant populations but also ancient and sometimes extinct

lineages? In a nutshell, molecular evolution leverages the patterns of genetic variation
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carried by individuals in order to uncover evolutionary mechanisms shaping the evolution

of organisms and their ancestral lineages, while at the same time shedding new light on

cellular and molecular processes allowing organisms to live and reproduce.

This section will recall the theoretical basis, the assumptions and the limitations

on which molecular evolution is based. It is a modest attempt, neither exhaustive nor

accurate, probably imprinted with the ideology of our current society on how we perceive

and interpret past discoveries. Moreover, this introduction will highlight a few names,

while in reality much of the development of molecular evolution also benefited from the

contribution of many unmentioned and sometimes forgotten scientists.

1.1 Population-genetics

Molecular evolution is theoretically built upon the framework of population genetics,

which in turn historically emerged as a unifying theory between Mendelian inheritance

and quantitative genetics, in the early twentieth century. Originally, Johann Gregor

Mendel established the statistical laws governing heredity of discrete characters through

hybridization experiments on the garden pea plant Pisum sativum between 1857 and

1864. This model of inheritance was rediscovered and confirmed in the early twen-

tieth century independently by botanists Hugo de Vries, Carl Correns and Erich von

Tschermak (Dunn, 2003).

At first, models of Mendelian inheritance were deemed incompatible with the models

of biometricians. The crux of the argument revolved around the evolution of continuous

characters1. Broadly speaking, supporters of Mendelian genetics held that evolution was

driven by mutations transmitted by the discrete segregation of alleles, which biometri-

cians rejected on the basis that this would necessarily imply discontinuous evolutionary

leaps (Bowler, 2003). Conversely, biometricians claimed that variation was continuous,

which Mendelian geneticists rejected on the basis that the variation measured by biome-

tricians was too small to be impacted by selection (Provine, 2001).

In a series of articles over the 1920s, the statistician Ronald A. Fisher reconciled

both theories. First, he proved mathematically that multiple discrete loci could result

in a continuous variation (Fisher, 1919). Secondly, Fisher (1930) and Haldane (1932)

proved that natural selection could change allele frequencies in a population. Fisher

and Haldane hence articulated selection on continuous traits with discrete underlying

genetic inheritance, a work that was completed by Wright (1932) for combinations of

interacting genes. Wright also proposed the concept of fitness landscape, viewing the

evolution of a population as a hill-climbing process. In this context, Wright also explored

some of the consequences of random drift, proposing that drift could sometimes allow

for a population to cross a valley between multiple fitness peaks. Altogether, Fisher,

Haldane and Wright laid the foundations of population genetics, a discipline which basi-

1Incompatibility between continuous and discrete evolution can actually be traced back to
debates between Jean-Baptiste de Lamarck (1744-1829) defending gradual changes and Georges
Cuvier (1869-1932) supporting punctual catastrophic changes, in the late eighteenth century.
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cally integrated Mendelian genetics, Darwinism and biometry, easing the debate between

continuous and gradual evolution2.

The emergence of this new scientific field was the first step towards the development

of a unified theory of evolution (Huxley, 1942), essentially defined on the basis that

natural selection acts on the heritable variation supplied by mutations (Mayr, 1959;

Stebbins, 1966; Dobzhansky, 1974).

1.2 Central dogma of molecular biology

During the theoretical development of population genetics, the support of heredity was

largely unknown, and the terminology of ’gene’, ’alleles’ and ’locus’ was essentially the-

oretical and not grounded on directly observable correlates. The first evidence that

deoxyribonucleic acid (DNA) is the molecular support of genetic information is in the

work of Avery et al. (1944), who showed that bacteria treated with a deoxyribonuclease

enzyme failed to transform, while otherwise transforming when treated by a protease.

The chemical composition of DNA was further elucidated by Chargaff et al. (1950), who

found that the proportions of adenine (A) and thymine (T) in DNA were roughly the

same as the amounts of cytosine (C) and guanine (G), suggesting a relation of comple-

mentarity between base pairs (A:T and G:C). On the other hand, the proportion of G+C

was found to vary from one species to another, which provided evidence that DNA could

encode the genetic information, via a four-letter molecular alphabet.

Ultimately, the double-helix structure of DNA was deciphered by Franklin and Gosling

(1953), Watson and Crick (1953) and Wilkins et al. (1953). Once the molecular structure

of DNA and its role as a support of heredity was elucidated, the work of Crick (1958) on

the question of the transfer of information from DNA to proteins resulted in the deter-

mination of the genetic code, the translation table from triplets of nucleotides (codons)

to amino acids. Ultimately, the establishment of the central dogma of molecular biology

detailed the process of protein synthesis. Briefly, the central dogma of molecular biology

states that the ”determination of sequence from nucleic acid to nucleic acid, or from

nucleic acid to protein may be possible, but transfer from protein to protein, or from

protein to nucleic acid is impossible” (Crick, 1970).

As the support of heredity, DNA gained a central role in evolutionary biology. More-

over, the development of new technologies such as the polymerase chain reaction (PCR)

by Kleppe et al. (1971), Sanger sequencing (Sanger and Coulson, 1975; Sanger et al.,

1977) and more recently the availability of next-generation sequencing techniques, re-

viewed in Mardis (2008) and Levy and Myers (2016), revolutionized the availability of

empirical data on which to test the theoretical predictions of population genetics.

2This debate was revived by palaeontologists Gould and Eldredge (1972). As of today it is
admitted that both macroevolutive patterns of punctual and gradual changes can be found.
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1.3 Neutral theory

Although a unifying theory, population genetics remained rather theoretical for some

time, because it deals with the concept of gene frequencies, yet there was no direct way

to unambiguously identify the genes with the observable phenotypic traits. For that

reason, the connection between theoretical population genetics and empirical and experi-

mental work was only indirect, although quite precisely formalized, through quantitative

genetics. Quantitative genetics, or the genetics of complex traits, works by proposing

a ‘microscopic’ model of the genetic architecture of a given observable phenotypic trait.

This entails the specification of the number of loci, the effect sizes contributed by each of

them, the possible dominance or epistatic interactions between alleles at the same locus

or between loci, etc. Population genetics is then used to derive theoretical expectations

about the response of the trait to artificial or natural selection, predictions which are

then tested against empirical data (Lande, 1976, 1980; Lande and Arnold, 1983). In

this framework, however, the detailed genetic basis of the evolutionary process is never

accessed directly, but is only indirectly tested.

The situation changed radically during the second half of the 20th century. With the

advent of molecular genetics, it became possible to have a direct access to the variability

of nucleic and protein sequences within a species, as well as to the differences between

closely related species, making it possible to estimate the rate at which allelic genes are

substituted. The new observations that were made thanks to these new technological

developments turned out to create some surprise.

First, by comparing protein sequences from related species, it was observed that the

number of point substitutions between pairs of species was approximately proportional

to the time since their last common ancestor (Zuckerkandl and Pauling, 1965; Salser

et al., 1976). These observations led to posit the molecular clock hypothesis, which

assumes that the rate at which point substitutions accumulate is approximately con-

stant through time. This apparently constant rate of molecular evolution is in sharp

contrast with the much more variable rate of morphological evolution observed in the

same species, and more generally across the entire fossil record (Simpson, 1944, 1953).

Second, electrophoretic methods uncovered surprisingly high levels of genetic variabil-

ity within natural populations, such that most proteins in diverse organisms were found

to be naturally polymorphic (Harris, 1966; Hubby and Lewontin, 1966; Lewontin and

Hubby, 1966). In many cases, this molecular polymorphism had no visible phenotypic

effects and showed no obvious correlation with any other covariate. Finally, by compar-

ing DNA sequences in related species, it was observed that the overall (genome-wide)

rate of DNA substitutions is very high, of least one nucleotide base per genome every

two years in a mammalian lineage.

These observations are not easily explained in purely adaptive terms. Instead, they

led Kimura (1968), and independently, King and Jukes (1969), to propose the neutral

theory of molecular evolution (Kimura et al., 1986; Kimura, 1991). The main tenet of the

neutral theory is that most intra- and inter-specific molecular variation is in fact adap-
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tively neutral, thus explaining the high protein variability observed in polymorphism

datasets, where the diversity is supplied by a high mutational input. Subsequently to

origination by mutation, this selectively neutral diversity is reduced by the random ex-

tinction of alleles, via the cumulative effect of the random sampling of alleles at each

generation. Although the likely fate of a neutral allele just created by mutation is its

ultimate extinction, it is also possible that random drift leads to the fixation of this allele

in the population. In this context, the frequency of the neutral allele fluctuates through

generations, randomly increasing or decreasing over time, because only a relatively small

number of gametes are randomly sampled out of the vast number of male and female

gametes produced in each generation. As a consequence, the effect of genetic drift at

the level of a population results into divergence between lineages, where the majority of

the nucleotide substitutions in the course of evolution must have been the result of the

random fixation of neutral mutants rather than the result of positive Darwinian selection.

Of note, the neutral theory does not say that most mutations are neutral or that adap-

tation does not take place. A substantial fraction of all mutations are in fact strongly

deleterious. However, those mutations are quickly purified away and are generally not

visible, neither in the polymorphism within species nor in the divergence between species.

The argument of the neutral theory is just that most mutations that are not deleterious

are essentially neutral. Adaptive mutations are just rare, relative to neutral mutations,

and as a consequence, adaptive arguments do not need to be invoked in order to explain

most of the observed intra- and inter-specific variation.

In a second step, Ohta and Kimura (1971) refined the neutral theory, by proposing

that mutations can have an effect on the phenotype, and therefore on fitness. However, if

their effect on fitness is sufficiently small, they should still behave neutrally and have their

fate dictated solely by drift. Ohta (1973) later proposed a mathematical formalization

of this argument, incorporating weakly selected mutations to propose the nearly-neutral

theory. This theory emphasizes that selective effects lower than the inverse of effective

population size are negligible and are expected to behave neutrally. In this regard,

effective population size (Ne) is a quantitative measure of genetic drift such that genetic

drift decreases with increased effective population size.

The neutral theory sparked a long-standing controversy between neutralist and selec-

tionists. Selectionists maintain that a mutant allele must have some selective advantage

to spread through a species, although admitting that a neutral allele may occasionally be

carried along by hitchhiking on a closely linked gene that is positively selected. Neutral-

ists, on the other hand, argued that some mutants might spread through a population

without having any selective advantage, just by random sampling, such that if a mutant

is selectively equivalent to preexisting resident alleles, its fate is thus left to chance. Of

note, even if the probability of fixation of any given neutral mutation is low (p = 1/2Ne),

the high rate of mutation at the gene or genome-wide level and the highly degener-

ate mapping between genotype and phenotype both leave considerable latitude at the

molecular level for random genetic changes that have no effect upon the fitness of the

organism (King and Jukes, 1969). As a result, the total flux of neutral substitutions
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can in fact be the dominant contribution to intraspecific polymorphism and interspecific

differences. This overwhelming combinatorial effect was probably the point that was

hard to grasp by many evolutionary biologists at the time, trained in the idea that most

mutations should have an effect on the phenotype. Another factor that contributed to

the difficulty in accepting the neutral theory is the fact that effective population sizes

turn out to be much smaller than true (census) population sizes. This point is important,

because, according to the nearly-neutral theory of Ohta (1992), the inverse of effective

population size directly determines the proportion of all mutations that are effectively

neutral. Once it is recognized that effective population sizes are small, it becomes easier

to accept that most mutations with weak effects are effectively neutral.

As of today, it is widely accepted that both genetic drift and natural selection par-

ticipate in the evolution of genomes. The controversy is no longer strictly dichotomous

but rather concerns the quantitative contributions of adaptive and of non-adaptive evo-

lutionary processes, and their articulation with regards to mutation, selection, drift,

migration, gene conversion, and other evolutionary processes.

1.4 The legacy of the nearly-neutral theory

The neutral theory, and its nearly-neutral extension, have broad implications in evolu-

tionary biology. Much of its insight has been integrated in modern population genetics,

molecular evolutionary sciences, but also phylogenetics and molecular dating. Impor-

tantly, because of the marginal role played in this theory by the most unpredictable

factor involved in molecular evolution, namely adaptation, the nearly-neutral theory is

in a good position to make clear quantitative predictions about the rate and patterns of

molecular evolution, or about the structure of genetic diversity within species. As such

it gives a well-defined framework to formalize various assumptions about the underlying

processes and test them against empirical sequence data, which are becoming increas-

ingly available. Questions within this framework range from the causes of mutational

rate variation, to the structure of fitness landscapes, or the impact of changes in effec-

tive population size between species. In the following, I summarize several of the most

important insights that have been contributed by the neutral and nearly-neutral theory,

and how they still play on current research in molecular evolution.

1.4.1 Mostly-purifying selection

First, along with the adoption of the nearly-neutral theory by evolutionary biologists, the

common perception about the nature of selection shifted from selection being a driver

of changes mediated by adaptive mutations to a mainly purifying force discarding and

filtering out strongly deleterious mutations (Lynch and Walsh, 2007). From this perspec-

tive, protein sequences are relatively close to their adaptive optimum such that many

mutations occurring in their sequence are likely to disrupt their functions. This effect

can be observed in underlying DNA sequences, where non-synonymous substitutions oc-
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cur less frequently than synonymous substitutions (King and Jukes, 1969), and similarly,

radical amino acid replacements are more less than conservative changes (Kimura, 1983).

These effects are also observed within populations, non-synonymous single-nucleotide

polymorphisms segregate at lower frequencies compared to synonymous polymorphisms,

a phenomenon explained by purification of deleterious alleles which cannot reach high

frequencies (Akashi, 1999; Cargill et al., 1999; Hughes, 2005). Finally, what determines

the rate of non-synonymous evolution of protein-coding genes is primarily the amount

of selective constraint acting on them, such that slowly evolving genes are just more

constrained than fast-evolving genes Kimura (1983).

1.4.2 The mutation-selection balance

Proteins are relatively close to, but not quite at their optimum. This relates to another

important conceptual point contributed by the nearly-neutral theory. From a neutralist

perspective, evolution should not be seen as an optimization process, but instead, as a

process driving natural protein sequences at their mutation-selection equilibrium. This

concept of mutation-selection balance explains important features of natural protein se-

quences, which cannot be explained only in terms of optimization. Thus, as noted early

on by King and Jukes (1969), amino acids that have more codons are more frequently

represented in natural protein coding sequences. Similarly, later work by Singer and

Hickey (2000) has shown that species with a mutational bias towards AT (respectively

GC) tended to have proteomes with a higher frequency of amino acids encoded by AT-

rich (respectively GC-rich) codons. Another implication is that proteins are not optimal,

either for their enzymatic properties (Cornish-Bowden, 1976; Albery and Knowles, 1976;

Hartl et al., 1985) or for their conformational stability (Taverna and Goldstein, 2002).

This non-optimality is observed even if proteins are under directional selection for the

optimal sequence. All these observations are clear illustrations of the fact that natural

sequences are not at their optimum, but instead, are the result of a trade-off between

mutation biases and mostly purifying selection. This trade-off between mutation and se-

lection is regulated by the amount of random drift, and thus by effective population size.

The concept of mutation-selection balance is not yet fully incorporated in evolutionary

thinking. Many evolutionary scientists, and many biologists more generally, still tend to

think in terms of optimization. Correctly formalizing this interplay between mutation,

selection and drift in the context of phylogenetic codon models is in fact at the core of

most of the work presented in the thesis.

1.4.3 The importance of drift

Tempering the effect of selection, drift mediated by effective population size has been

repeatedly invoked to explain the relaxation of the selective strength. First, it has been

observed that within populations relative diversity of selected site is more reduced for

species with smaller effective population size. Indeed, in an intra-specific context, the

non-synonymous diversity, relative to the synonymous diversity (i.e. πN/πS), is reduced
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in species characterized by larger effective population sizes (Piganeau and Eyre-Walker,

2009; Elyashiv et al., 2010; Galtier, 2016; Chen et al., 2017; James et al., 2017). Similarly,

in a phylogenetic context, the strength of selection, such as measured by the relative rate

of non-synonymous over synonymous substitution, is lower along lineages with small

effective population size (Ohta, 1993, 1995; Moran, 1996; Woolfit and Bromham, 2003,

2005; Popadin et al., 2007). It is important to note that, in most cases, the effective

population size is not directly measured, but a surrogate measure is used instead, for

example synonymous diversity (i.e. πS) as in (Galtier, 2016), or body size or longevity,

expected to be large in lineages with a low Ne (Romiguier et al., 2014). Leveraging the

nearly-neutral theory in order to quantitatively measure effective population size in a

phylogenetic context is one of the main objectives of this thesis, such as presented in

chapter 8. Of note, the quantitative response of the molecular evolutionary process to

changes in effective population size appears to strongly depend on the underlying fitness

landscapes (Welch et al., 2008), to the point of being entirely absent (Cherry, 1998;

Goldstein, 2013). This relationship between the rate of evolution and effective population

size is also a main question addressed in this thesis, such as studied in chapter 9.

1.4.4 Unravelling adaptation

The neutralist view of selection as mostly purifying raises an important question: where,

and to what extent, does adaptation leave traces in molecular sequences? The fact that

the neutral theory has been relatively silent on this question has largely contributed

to its rejection by many biologists, and in many respects the question is still open.

At first, methods for detecting adaptation have been developed, integrating either the

neutral or the nearly-neutral regime as a null model. Departures from one of these

null model are then typically interpreted as traces of adaptations. This idea to detect

traces of adaptation has been explored in a phylogenetic context, whenever the null

model is neutral (Goldman and Yang, 1994; Muse and Gaut, 1994; Yang and Swan-

son, 2002; Zhang and Nielsen, 2005) or nearly-neutral (Rodrigue and Lartillot, 2016;

Bloom, 2017). Similarly, in a population-genetics context, adaptation is detected as a

deviation from the null model, considered originally neutral (McDonald and Kreitman,

1991; Charlesworth, 1994; Smith and Eyre-Walker, 2002), and subsequently improved

to account for slightly deleterious mutations in a nearly-neutral regime (Eyre-Walker

and Keightley, 2009; Galtier, 2016).

These methods have clearly revealed important traces of adaptation (Bustamante

et al., 2005; Halligan et al., 2010; Enard et al., 2014), in particular, in genes implicated

in host-pathogen interactions (Enard et al., 2016; Grandaubert et al., 2019), or in other

specific genes involved in intra-genomic Red-Queen dynamics such as PRDM9 (Thomas

et al., 2009; Oliver et al., 2009; Ponting, 2011; Latrille et al., 2017). However, this might

represent only the most extreme adaptive events. Much of adaptation might still have

been missed at the molecular level. Kimura (1983) proposed a more radical insight about

the link between phenotypic adaptation and neutral molecular evolution. By showing an
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example of a phenotypic trait under stabilizing selection and controlled by a large number

of loci with small effects, phenotype efficiently optimized by selection, but the molecular

evolutionary process at each locus essentially indistinguishable from a neutral process.

More recent work, using the empirical knowledge acquired by large-scale population-

genomics project in humans, draws similar conclusions (Simons et al., 2018). Namely that

many traits turn out to be highly polygenic (Pritchard and Cox, 2002), and the frequency

changes contributing to their adaptive fine-tuning can be highly stochastic (Sella and

Barton, 2019). Analogous to statistical physics, microscopic behaviour of a physical

system is dominated by thermal noise, while the macroscopic state looks essentially

deterministic and driven by a principle of free-energy minimization.

1.4.5 Molecular evolution is mutation-limited

Originally, the neutral theory was heavily relying on the molecular clock hypothesis of

Zuckerkandl and Pauling (1965), which posits that rate of sequence evolution is con-

stant through time and across evolutionary lineages. Although appealing, it became

clear that the rate of evolution was not constant (ChungWu and Wen-Hsiung Li, 1985;

Li et al., 1987; Bulmer et al., 1991; Gaut et al., 1992). This rejection of the strict clock

motivated important methodological developments for modelling the fluctuations of the

substitution rate along a phylogeny (Sanderson, 1997; Thorne et al., 1998; Kishino et al.,

2001; Aris-Brosou and Yang, 2002; Drummond et al., 2006; Lepage et al., 2007). The

primary motivation for these relaxed clock models was to achieve more accurate molec-

ular dating. However, these developments also fostered comparative analyses, trying to

explain the causes of the variation of substitution rate between lineages. Methodologi-

cally, this motivated the developments of methods able to conduct correlation analyses

between molecular evolutionary rates and observable quantitative traits, while correcting

for phylogenetic inertia (Lanfear et al., 2010b; Lartillot and Poujol, 2011). Empirically,

generation time, but also metabolic rate, or selection for longevity, are potential expla-

nations for the variation in substitution rate (Lartillot and Delsuc, 2012), which can be

interpreted in the light of the molecular mechanisms of cell division (Gao et al., 2016).

The exact reasons for the variation in substitution rate between lineages are still

debated. However, what is clear is that this variation is mostly reflecting variation in the

mutation rate. As such, and in spite of the historically central role played by the molecular

clock in the arguments in favour of the neutral theory, the rejection of the molecular

clock by empirical data does not contradict the neutral theory. It just confirms that, in a

neutral or nearly-neutral regime, the molecular evolutionary process is mutation-limited,

or, in other words, that the substitution rate is determined primarily by the mutation rate.

1.4.6 Extending the null hypothesis of molecular evolution

Finally, some patterns have been found inconsistent within the general framework of

mutation, selection and drift, thus leading to uncovering new forces such as biased gene

conversion which mimics selection but are fundamentally segregation distortion during
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recombination (Marais, 2003; Galtier and Duret, 2007; Duret and Galtier, 2009). Such

forces are altering the composition of genomes and must be carefully accounted for in

models of evolution (Galtier et al., 2009; Ratnakumar et al., 2010; Figuet et al., 2014).

However, even though forces such as biased gene conversion are not within the scope

of this thesis, some assumptions and design of our models had been taken such as to

implement these forces subsequently.

1.4.7 Conclusion

Altogether, evolution of sequences results from the interplay between mutation, selec-

tion and drift, where this formalism is developed in chapter 2. Of all these components,

selection is the most pervasive, which can be approximated and observed in protein-

coding DNA sequences in a phylogenetic context between lineages, presented in chap-

ter 3). Consequently, models are applied to empirical data, and the methodology of

Bayesian inference from an alignment of DNA sequences is presented in chapter 4. Fi-

nally, selection of protein-coding DNA sequences is related to biochemical and biophys-

ical constraints (chapter 4).
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In molecular evolution, the information contained in empirically observed sequences

is leveraged to reconstruct ancestral lineages and to unveil the evolutionary mechanisms

having generated this diversity of sequences. In other words, the task is to reconstruct

the ancestral path followed by lineages using the knowledge available today, by working

backward in time. To do so, however, requires a theoretical model of the generating

process forward in time. One can then play this model forward in time and relate the

resulting generated sequences to empirically observed patterns.

Working out the long-term molecular evolutionary process first requires to formalize

what happens in a short time period within populations. Population genetics, with its

assumptions and limitations, provides the theoretical framework for this. The first sec-

tion thus recalls the basics of mathematical population genetics, and more specifically,
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the Wright-Fisher model and its assumptions. This will allow me to relate parameters

of evolution such as mutation, selection and drift to observable patterns in molecular

sequences such as the probability of fixation of a mutant allele, as well as the expected

number of copies of the derived allele we should observe in a population. These rela-

tionships between the underlying evolutionary forces and the observable patterns will

subsequently be leveraged and recruited in the next section to derive an approximation

of the long-term process of sequence substitution, again, parameterized directly in terms

of mutation, selection and drift.

Although the mathematical proofs for most of the results presented here are out of

the scope of this manuscript, an effort was made to state all definitions and assump-

tions. Such an effort is meant to clearly define the models, their assumptions and their

parameterization from the ground up.

2.1 Population genetics of sequences

2.1.1 The Wright-Fisher model with selection

The Wright-Fisher model describes the change in frequency of a polymorphic gene with

two alleles in a diploid population over time. The population is assumed to consist of

fixed number of diploid individuals N ≫ 1. It is also assumed to be panmictic (i.e. non-

preferential random mating), with non-overlapping generations. The number of copies of

the derived alleleB present at the current generation is denoted i and the frequency of this

mutant allele B is denoted p = i/2N , while the frequency of the resident A alleles is 1−p.

The ability to survive and produce offspring differs between the three diploid geno-

types (AA, AB, BB). Here, selection is assumed to occur between the zygotic and

the adult stage, called post-zygotic selection. Quantitatively, selection is captured by a

measure called Wrightian fitness (W ), which, for a given diploid genotype, is defined as

the expected number of offspring produced by an individual having this genotype. Since

the population is regulated in size, only the relative fitness matters, which is usually

set to 1 for the reference (wild-type) genotype. It is convenient to define the fitness of

the other two genotypes, relative to the wild-type, in terms of a selection coefficient.

Furthermore, in the following, we will assume additive effects (co-dominance), such that

the heterozygote has an intermediate fitness between the two homozygotes. Altogether,

fitness of the three diploid genotypes are defined as:





WAA = 1

WAB = 1 + s

WBB = 1 + 2s

(2.1)

More generally than the previous equations, under the assumption that selection is

weak |s| ≪ 1, the selection coefficient can be approximated by the difference in Wrightian
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2.1. Population genetics of sequences

fitness of the mutant and the resident allele as:

s =
WB −WA

WA
, (2.2)

=
WB

WA
− 1, (2.3)

≃ ln

(
WB

WA

)
, (2.4)

≃ ln(WB) − ln(WA), (2.5)

≃ fB − fA, (2.6)

where f = ln(W ) is often referred to as the Malthusian fitness, relative fitness or also log-

fitness.

2.1.2 Frequency changes across successive generations

Under the Hardy-Weinberg equilibrium of the population, the diploid genotype frequen-

cies in the current generation are distributed as given in table 2.1.

As a result, the mean fitness in the population is a function of the selection coefficient

and the frequency of two alleles as:

W = (1 + 2s)p2 + (1 + s)2p(1 − p) + (1 − p)2 (2.7)

= 1 + 2ps, (2.8)

And the relative fitness of the three different genotypes are also shown in table 2.1.

Genotype AA AB BB

Wrightian fitness (W ) 1 1 + s 1 + 2s

Hardy-Weinberg frequency (1 − p)2 2p(1 − p) p2

Relative Wrightian fitness
1

1 + 2ps

1 + s

1 + 2ps

1 + 2s

1 + 2ps

Table 2.1: Fitnesses of the different genotypes

Reproduction proceeds in two steps. In a first step, a very large pool of gametes

is produced, in which adults contribute proportionally to the fitness of their genotype.

Altogether, the frequency p′ of gametes bearing the B allele is a function of p and s,

as shown in figure 2.1, and formally derived as:

p′ = p2 1 + 2s

1 + 2ps
+ p(1 − p)

1 + s

1 + 2ps
(2.9)

= p
1 + s(1 + p)

1 + 2ps
(2.10)
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2.1. Population genetics of sequences

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

p

p
′

s = 0.2
s = 0.1
s = 0

s = −0.1
s = −0.2

Figure 2.1: Frequency of derived allele p′ after a generation in the vertical axis a
function of the frequency in the previous generation p in the horizontal axis, shown for
several selection coefficients in coloured solid lines. Positive selection coefficients (s > 0)
result in increased derived allele frequency at the next generation, which is intuitively
expected. The effect is stronger when the derived allele frequency is close to 0.5, intuitively
because the poll of both alleles must be sufficiently large such that they can be replaced. It
is worth noting that even for strong selection coefficients (s = 0.2), completely unrealistic
in real population, the difference in frequency from one generation to the next is subtle.

In a second step, the N individuals of the next generation are obtained by randomly

sampling from the pool of gametes. As a result, the probability Pij , that there are j

copies of the derived allele B present at the next generation, given that there were i

copies in the current generation is given by the binomial distribution, with a propor-

tion p′ of B alleles in gametes:

Pij =

(
2N

j

)
(
p′)j (1 − p′)2N−j

(2.11)

=

(
2N

j

)(
p

1 + s(1 + p)

1 + 2ps

)j (
1 − p

1 + s(1 + p)

1 + 2ps

)2N−j

(2.12)

These transition probabilities define a discrete-space and discrete-time Markov pro-

cess. It has also been shown to be extremely difficult to explicitly derive formulas for

several quantities of evolutionary interest.

Of note, under the assumption that selection is weak |s| ≪ 1, p′ reduces to:

p′ ≃ p(1 + s+ ps− 2ps) (2.13)

= p+ sp(1 − p) (2.14)

= p+ ∆p, (2.15)

where ∆p = sp(1 − p)
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2.1. Population genetics of sequences

Intuitively, fluctuations induced by the binomial sampling (equation 2.12) are the

underlying cause of random drift. Quantitatively, the expected frequency change from

one adult generation to the next adult generation is:

E[∆p] = sp(1 − p). (2.16)

The variance of this binomial distribution is given by:

Var[∆p] =
p′(1 − p′)

2N
(2.17)

Since the change in frequency between two generations is small (p ≃ p′), the variance

is very close to:

Var[∆p] ≃
p(1 − p)

2N
(2.18)

Thus, the variance induced by random drift is inversely proportional to the population

size N . Also, if s ≫ 1/2N , then E[∆p] ≫ Var[∆p], or, in other words, the system-

atic trend imprinted by selection dominates over drift, describing the strong selection

regime. In contrast, if s ≪ 1/2N , drift dominates over selection, describing the ef-

fectively neutral regime.

2.1.3 Effective population size

The notion of effective population size, called Ne, only appears when we apply a panmic-

tic model to a population that is not, or to a real population. Ne was originally defined as

”the number of breeding individuals in an idealized population that would show the same

amount of dispersion of allele frequencies under random genetic drift or the same amount

of inbreeding as the population under consideration” (Wright, 1931). For most quantities

of interest and most real populations, the census population size N of a real population is

usually larger than the effective population size Ne. The same population may have mul-

tiple effective population sizes for different genetic loci, as for example sex chromosomes

do not have the same population sizes as autosomes. For the following development, this

idealize population with a single effective population Ne will be assumed.

2.1.4 Probability of fixation

Starting from an initial frequency, the Wright-Fisher process eventually reaches absorp-

tion: the derived allele either dies out or invades the population and thus reach fix-

ation. As the effective population size (Ne) approaches infinity (i.e. Ne → ∞), and

assuming that the selection coefficient scaled by effective population size (Nes) remains

constant, the discrete Markov process defined above can be closely approximated by a

continuous-time and continuous-space diffusion process. The parameters of this process

are summarized in table 2.2 for readability.

Under this diffusive approximation, a partial differential equation known as the Kol-

mogorov’s backward equation can be used to obtain the fixation probability of the derived
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2.1. Population genetics of sequences

Parameter Symbol Range

Census population size N [102, 106]

Effective population size Ne [102, 106]

Absolute Wrightian fitness W ≃ 1

Relative fitness f = ln(W ) ≪ 1

Selection coefficient s |s| ≪ 1

Scaled selection coefficient S = 4Nes Finite (negative or positive)

Mutation rate per generation u [10−10, 10−7] per site

Scaled mutation rate θ = 4Neu [10−8, 10−1] per site

Table 2.2: Parameters of population genetics

allele. Formally, for an effective population size Ne, Kimura (1962) derived the proba-

bility of fixation (Pfix(s,Ne, p)) of a derived allele with selection coefficient s and initial

frequency p if the selection coefficient is small (|s| ≪ 1):

Pfix(s,Ne, p) =
1 − e−4Neps

1 − e−4Nes
. (2.19)

Because s and Ne are confounded parameters, this probability of fixation is denoted

Pfix(S, p), as a function the scaled selection coefficient S = 4Nes and p, as shown in

figure 2.2, and formally derived as:

Pfix(S, p) =
1 − e−pS

1 − e−S
. (2.20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4
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P
fi

x
(S

,p
)

S = 12
S = 4
S = 0
S = −4
S = −12

Figure 2.2: Probability of fixation Pfix(S, p) in the vertical axis as a function of the
initial frequency p in the horizontal axis, shown for different scaled effective population
size S = 4Nes. In contrast to changes of frequency during a generation, the probability
of fixation is sensitive to very weak selection coefficients (|s| ≪ 1), as long as the scaled
selection coefficient is not negligible (|S| > 1). Intuitively, selective effects are magnified
by population size because the fixation probability is the resultant of the overall trajectory
of the allele, integrating small effects throughout its lifespan.
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2.1. Population genetics of sequences

An interesting special case is obtained for a new mutation appearing in the population.

Because it is a single mutant, the initial frequency of the derived allele is p = 1/2Ne, and

this probability of fixation denoted Pfix(s,Ne) is given by:

Pfix(s,Ne) =
1 − e−2s

1 − e−4Nes
(2.21)

≃
2s

1 − e−4Nes
(2.22)

The special case of a neutral allele can be obtained by taking the limit when s goes to 0.

Pfix(0, Ne) =
1

2Ne
(2.23)

Altogether, the fixation probability of a selected single mutant relative to the fixation

probability of a selectively neutral single mutant is given as:

Pfix(s,Ne)

Pfix(0, Ne)
≃ 2Ne

2s

1 − e−S
, (2.24)

≃
S

1 − e−S
, (2.25)

where this quantity is solely dependent on the scaled selection coefficient S. Such essential

result has important consequences, random genetic drift and selection are intrinsically

confounded factors. As a an example, increasing population size by a factor of 2 while

reducing the selection coefficient by the same amount leads to the exact same equation,

such that they are indistinguishable. Moreover, the equation have different limits as a

function of the selection coefficient:





lim
S→−∞

S

1 − e−S
= −SeS

lim
S→0

S

1 − e−S
= 1 +

S

2

lim
S→+∞

S

1 − e−S
= S.

(2.26)

More precisely, the scaled fixation probability has different regimes depending on the

value of the scaled selection coefficient, as illustrated in figure 2.3. In the regime of a

weak selection coefficient, usually defined as |S| ≪ 1 or |s| ≪ 1/Ne, known as the drift

barrier, the mutant allele is behaving mostly as a neutral allele.
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Figure 2.3: Fixation probability of a selected allele relative to a neutral allele, shown in
the vertical axis, as function of the scaled selection coefficient S = 4Nes in the horizontal
axis. For a substantial negative scaled selection coefficient (s ≤ −1/Ne, red-filled area),
the probability of fixation is greatly reduced (by an exponential factor), and the allele will
not likely reach fixation. On the other hand, for a positive scaled selection coefficient
(s ≥ 1/Ne, green filled area), the ratio is approximately linear with regard to S. In
between, whenever the absolute value of s is close to 1/Ne (yellow filled area), the allele
behaves approximately neutrally.

2.1.5 Site frequency spectrum

The probability of fixation of an allele can be empirically observable, and in the context of

a Wright-Fisher processes it is related to selection and drift. However, this absorbing fate

is not the sole characteristic of the process that relates empirical observable quantities

to parameters of the process. Along the whole trajectory of an allele, before fixation or

extinction, the probability of this allele to be at a certain frequency can be related to

its selection coefficient and to the effective population size. More precisely, g(x)dx is

the expected time for which the population frequency of derived allele is in the range

(x, x+ dx) before eventual absorption, as shown in figure 2.4, which is derived using the

Kolmogorov forward equation as a function of x and S:

g(x, s,Ne) =

(
1 − e−2s

) (
1 − e−4Nes(1−x)

)

s(1 − e−4Nes)x(1 − x)
(2.27)

⇒ g(x, S) ≈
2
(
1 − e−S(1−x)

)

(1 − e−S)x(1 − x)
(2.28)
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Figure 2.4: Expected time at a derived frequency g(x, S) in the vertical axis as a function
of the frequency x, shown for different scaled selection coefficient. Alleles with a positive
selection coefficient can be observed at high frequency, while alleles with negative selection
coefficients are unlikely to be observed at high frequency.

This equation is solely valid for a gene with two alleles, a configuration which is rarely

observed in empirical data since more than two variants of a gene are usually present in

the population. However, it is frequent to observe sites inside a gene sequence for which

only two alleles are segregating. This observation led to the development of a site-specific

Wright-Fisher process, assuming that each site follows an independent process (Sawyer

and Hartl, 1992). Strictly speaking, this model considers a collection of independently

evolving loci, meaning without linkage. It provides a good approximation if there is free

recombination between sites. Moreover, the collection is considered infinite whereas the

total mutation rate across this infinite collection is considered finite. The assumption of

an infinite number of sites is necessary to ensure that each mutation arises at a new site,

with a Poisson distribution of total rate u per generation for the whole sequence.

From an empirical perspective, for a sample of n sequences taken in the population,

the expected number of sites with i copies of the derived allele (with i ranging from

1 to n − 1) is denoted G(i, n). The collection of all G(i, n) generates what is called

a site frequency spectrum (SFS), which can intuitively be interpreted as the discrete

version of the expected time at a derived frequency (equation 2.28), readily available

from a sample of sequences from a population. Given the scaled selection coefficient

(S = 4Nes), and the scaled mutation rate per generation for the whole sequence (θ =
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2.2. Mutation-selection process

4Neu), each entry of the SFS is:

G(i, n) =

∫ 1

0
2Neug(x, S)

(
n

i

)
xi(1 − x)n−idx (2.29)

= θ

∫ 1

0

1 − e−S(1−x)

(1 − e−S)x(1 − x)

(
n

i

)
xi(1 − x)n−idx (2.30)

=
θ

1 − e−S

(
n

i

)∫ 1

0

(
1 − e−S(1−x)

)
xi−1(1 − x)n−i−1dx (2.31)

This site frequency spectrum can be confronted to empirical polymorphic data in

order to estimate the scaled selection coefficient of new mutations. However, a single

selection coefficient for all sites and all mutations is biologically not realistic. Accordingly,

a distribution of selection coefficients across sites is assumed, which is usually modelled

as a continuous distribution, known as the distribution of fitness effects of mutations

(DFE). Mixing over this distribution, the SFS can then be computed as a function of

the underlying DFE, and can thus be estimated based on empirical data (Eyre-Walker

et al., 2006; Eyre-Walker and Keightley, 2009).

2.2 Mutation-selection process

The previous section recalled the Wright-Fisher process of evolution inside a popula-

tion, relating selection and drift to the diversity of sequences, which empirically requires

gene sequences for at least several individuals. However, modelling sequence evolution

between different species along lineages is a different endeavour, in which species are of-

ten simplified with a single representative sequence, collapsing the intraspecific diversity.

Under this simplification, the interspecific variability and the evolutionary trajectory of

sequences are described by the past history of point substitutions along lineages. The

rate at which such substitution occurs can nonetheless be decomposed into two mech-

anisms: their origination through mutation and their final fate of fixation or loss, a

modelling approach broadly known as the origin-fixation approximation (McCandlish

and Stoltzfus, 2014), illustrated in figure 2.5. Most importantly, this decomposition of

substitution events into mutation and fixation events is able to conciliate population

genetics and interspecific molecular evolution, where the substitution history is parame-

terized by mutation, selection and drift. In the field of phylogenetics, the origin-fixation

framework is more commonly known as the mutation-selection paradigm, where fixation

of an allele encompasses the effect of natural selection and drift (which are confounded

factors, see equation 2.25), and origination corresponds to mutation. Since the scope

of this manuscript emanates from phylogenetics, I will use the convention mutation-

selection terminology hereafter. Of note, a more general mathematical description of the

mutation-selection framework recruiting tools from statistical physics can be found in

Sella and Hirsh (2005) and Mustonen and Lässig (2009).
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Figure 2.5: Mutation-selection substitutions models. The trajectory of alleles inside a
population is collapsed into a single point substitution process. This approximation is
valid under low mutation rates such that a mutation originates uniquely whenever the
gene is monomorphic (with a single allele).

2.2.1 Mutation-limited process

Mutation-selection probabilistic models are usually Markovian with respect to time, such

that the next substitution event depends on the current representative sequence but not

on earlier sequences visited in the history of a lineage. This continuous-time Markovian

process is valid if the mutation rate is sufficiently low, such that the event of a new

mutation reaching fixation is completed before the next one occurs. Since the rate of

substitution is equal to u (per generation) and that each allele ultimately reaching fix-

ation is segregating for an average of 4Ne generations (Kimura and Ohta, 1969), this

assumption is broadly applicable whenever the product of population size and mutation

rate per generation for the sequence is lower than 1 (4Neu ≪ 1). More strictly, the

model would require not only that new mutations reaching fixation do so before the next

substitution occurs, but before any mutation occurs, even the ones that ultimately be-

come extinct. Since at each generation during the process an average of 2Ne mutations

are produced, the point substitution is valid under the condition that 8N2
e u ≪ 1. In

practice, the assumptions that 4Neu ≪ 1 is a sufficient condition for the process to be

well approximated. Throughout this development, it is important to note that u is the

mutation rate for the whole sequence under consideration.

For large sequences this approximation is usually not valid, and the sequence is then

decomposed into each individual site, forming a collection of independently evolving

continuous-time Markov chains. For such a decomposition to be valid, these models have

to assume free recombination between sites. The mutation rate u in this condition then

refers to the mutation rate for each independent site, rather than the total mutation

rate over the collection as a whole. For example, Halpern and Bruno (1998) constructed

a model for the evolution of coding sequences where each codon site is modelled as

an independent Markov chain.
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2.2. Mutation-selection process

2.2.2 Substitution rate

The continuous-time Markov chain is defined by the instantaneous rate at which tran-

sitions occur between pairs of states. Parameters of this process are summarized in

table 2.3 for readability.

Parameter Symbol Range

Scaled fitness F = 4Nef finite, positive or negative

Mutation rate per time µ [10−11, 10−8] per site per year

Substitution rate per time Q [10−11, 10−8] per site per year

Equilibrium frequency π [0, 1]

Equilibrium frequency under mutation σ [0, 1]

Mean scaled fixation probability ν [0, 1] for purifying selection

Table 2.3: Parameter of mutation-selection processes used in this section (2.2.1)

Given the current state of allele A, the rate of transition to other states can be

derived using the population-genetic equations introduced above. At each generation,

the expectation for the number of possible mutants is 2Neu, and each of these mutants

has a probability Pfix(s,Ne) to result in a substitution. Altogether, the instantaneous

rate of substitution from allele A to B, denoted QA→B, is equal to the rate of mutation

(µA→B) multiplied by the probability of fixation of the mutation Pfix(sA→B, Ne) and

scaled by the number of possible mutants at each generation (2Ne):

QA→B = 2NeµA→BPfix(sA→B, Ne) (2.32)

It is important to note that the substitution rate and the mutation rate are in the same

units, such that this equation is valid whether the rate is measured either in units of

chronological time or per generation (or in branch length, which will matter later on).

As a convention, in what follows, mutation rate is denoted u when measured in units

of generation, and denoted µ when measured in units of time. As a consequence, Q is

measured in units of time in this section.

In the case of selected mutations, the probability of fixation depends on the difference

in log-fitness (fA and fB) between the two alleles:

QA→B = 2NeµA→BPfix(sA→B, Ne) (2.33)

= 2NeµA→B
2(fB − fA)

1 − e4Ne(fA−fB)
(2.34)

= µA→B
FB − FA

1 − eFA−FB
, where F = 4Nef (2.35)

In the case of neutral mutations, the probability of fixation is independent of the

original and target sequence, and equals 1/2Ne. As a consequence, the substitution
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rate denoted Q0
A→B simplifies to:

Q0
A→B = 2NeµA→BPfix(0, Ne) (2.36)

= 2NeµA→B
1

2Ne
(2.37)

= µA→B (2.38)

If the difference of log-fitness tends to 0, the substitution rate is equal to the mutation

rate, retrieving equation 2.38:

lim
|FB−FA|→0

QA→B = µA→B (2.39)

Taken together, the transition rates which generate the substitution history and ulti-

mately the interspecific diversity is parameterized solely by mutation, selection and drift.

Consequently, from a particular history of substitutions, one can theoretically estimate

the parameters of selection, mutation and drift, although it is important to keep in mind

that selection and drift are confounded.

2.2.3 Reversibility of the process

The continuous-time Markov chain has so far been defined for 2 alleles but can be gen-

eralized to any number of alleles, when the number of alleles is discrete (n) and when

transition from any allele to any other allele is possible in one or more substitutions. In

this configuration, the transition rates between all possible pairs of alleles is defined by

equation 2.35, and equals 0 whenever single step transitions are not possible. Because

any state is ultimately connected to any other state, the continuous-time Markov chain is

irreducible. Moreover, this substitution process is positive recurrent and aperiodic since

any strictly positive transition rate is matched by a strictly positive transition for the

reverse substitution. More precisely, the substitution rate between two alleles is null only

if the underlying mutation rate is null, in which case the transition rate for the reverse

mutation is also null, hence the transition rate for the reverse substitution is also null.

Theoretically, for an irreducible, positive recurrent and aperiodic continuous-time

Markov chain, a necessary and sufficient condition to be reversible is given by Kol-

mogorov’s criterion. Kolmogorov’s criterion implies that the product of transition rates

through any closed loop is the same whenever the traversing is done forward or in reverse.

As an example for a Markov chain composed of 3 alleles (i, j and k), as illustrated in

figure 2.6, the transition rates must satisfy the equality:

Qi→jQj→kQk→i = Qi→kQk→jQj→i (2.40)

Kolmogorov’s criterion is satisfied under specific conditions for the substitution pro-
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i

j k

Qi→j

Qj→k

Qk→i

Qj→i

Qk→j

Qi→k

Figure 2.6: The continuous-time Markov chain is reversible if the process fulfils Kol-
mogorov’s criterion. Namely, the product of the transition rates for a closed loop is equal
whether traversed in one sense (blue arrows) or the other (red arrows).

cess (2.35):

1 =
Qi→jQj→kQk→i

Qi→kQk→jQj→i
(2.41)

=
µi→jµj→kµk→i

µi→kµk→jµj→i
×

(Fj − Fi)(Fk − Fj)(Fi − Fk)

(Fk − Fi)(Fj − Fk)(Fi − Fj)

×
(1 − eFi−Fk)(1 − eFk−Fj )(1 − eFj−Fi)

(1 − eFi−Fj )(1 − eFj−Fk)(1 − eFk−Fi)
, (2.42)

=
µi→jµj→kµk→i

µi→kµk→jµj→i
× −✘✘✘✘✘(Fi − Fj)✘✘✘✘✘

(Fj − Fk)✘✘✘✘✘(Fk − Fi)

✘✘✘✘✘(Fk − Fi)✘✘✘✘✘
(Fj − Fk)✘✘✘✘✘(Fi − Fj)

×
(eFi−Fi − eFi−Fk)(eFk−Fk − eFk−Fj )(eFj−Fj − eFj−Fi)

(eFi−Fi − eFi−Fj )(eFj−Fj − eFj−Fk)(eFk−Fk − eFk−Fi)
, (2.43)

= −
µi→jµj→kµk→i

µi→kµk→jµj→i

×
✚
✚eFi(e−Fi − e−Fk)✚

✚eFk(e−Fk − e−Fj )✚✚eFj (e−Fj − e−Fi)

✚
✚eFi(e−Fi − e−Fj )✚✚eFj (e−Fj − e−Fk)✚

✚eFk(e−Fk − e−Fi)
, (2.44)

=
µi→jµj→kµk→i

µi→kµk→jµj→i

✭✭✭✭✭✭✭
(e−Fk − e−Fi)✭✭✭✭✭✭✭

(e−Fj − e−Fk)✭✭✭✭✭✭✭
(e−Fi − e−Fj )

✭✭✭✭✭✭✭
(e−Fi − e−Fj )✭✭✭✭✭✭✭

(e−Fj − e−Fk)✭✭✭✭✭✭✭
(e−Fk − e−Fi)

, (2.45)

=
µi→jµj→kµk→i

µi→kµk→jµj→i
. (2.46)

Namely, Kolmogorov’s criterion for the substitution process is satisfied only if the muta-

tion process is also reversible, in which case Kolmogorov’s criterion is also fulfilled:

µi→jµj→kµk→i = µi→kµk→jµj→i. (2.47)

This example can be generalized for any closed loop, such that the reversibility of the

substitution process is conditioned on the reversibility of the underlying mutation pro-

cess, which is often assumed.

2.2.4 Stationary distribution

A realization of the Markov chain for a long period of time results in a given proportion

of the time for which the process is fixed for a specific allele, where this proportion
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depends of the allele fitness, the mutational process and Ne. Because the continuous-time

Markov chain is irreducible, positive recurrent and aperiodic, it has a unique stationary

distribution π, where πi corresponds to the proportion of time spent in allele i (1 ≤≤ n)

after the Markov chain has run for an infinite amount of time.

Moreover, under the condition that the Markov chain is time-reversible, the detailed

balance for the stationary distribution is satisfied for every pair i and j:

πi

πj
=
Qj→i

Qi→j
(2.48)

=
µj→i

µi→j

Fi − Fj

1 − eFj−Fj

1 − eFi−Fj

Fj − Fi
(2.49)

= −
µj→i

µi→j

eFi(e−Fi − e−Fj )

eFj (e−Fj − e−Fi)
(2.50)

=
µj→i

µi→j

eFi

eFj
(2.51)

(2.52)

Under the assumption that the mutational process is also reversible, the detailed bal-

ance for the stationary distribution of the mutation process (σ) is satisfied for ev-

ery pair i and j:

µj→i

µi→j
=
σi

σj
(2.53)

Altogether, the probability πi to find the population in allele i is proportional to a

function (also called a Boltzmann factor) that depends only on the fitness of allele i,

the population size, and details of the mutation process (Sella and Hirsh, 2005; Mus-

tonen and Lässig, 2005):

πi

πj
=
σie

Fi

σjeFj
and

n∑

i=1

πi = 1, (2.54)

⇐⇒ πi =
σie

Fi

n∑
j=1

σjeFj

, (2.55)

where the denominator is a normalizing constant such that the sum of probabilities is

equal to 1. By analogy with thermodynamic systems, the evolutionary system thus

reaches a Boltzmann-like distribution with N−1
e playing the role of evolutionary temper-

ature, and the log-fitness f the role of energy1.

2.2.5 Mean scaled fixation probability

Occurrence probabilities given by the stationary distribution allows one to calculate all

observable quantities of interest, such as the mean fitness, or the mean mutation and

1At high mutation rates, the quasi-species theory provides another analogy with statistical
mechanics, in which the mutation rate plays the role of temperature instead of genetic drift.
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2.2. Mutation-selection process

substitution rates, using standard probability theory. One quantity of interest is the

ratio of the mean substitution rate over the mean mutation rate, called ν:

ν =
〈Q〉

〈µ〉
, (2.56)

=

∑
1≤i,j≤n

πiQi→j

∑
1≤i,j≤n

πiµi→j
, (2.57)

where the notation 〈·〉 denotes the statistical average, and the sum is over all possible pairs

of codons having a certain property. In other words, ν represents the flow of substitutions

at equilibrium, normalized by the mutational flow (or mutational opportunities).

This definition can in principle be applied to any subset of codon pairs. A particularly

important case is to sum over all possible pairs of non-synonymous codons (which will

be considered in the next chapter). In that case, ν captures the fundamental quantity

usually referred to as dN/dS . However, the definition is more general.

This ratio can also be interpreted as the mean scaled fixation probability of all mu-

tations that are being proposed at mutation selection equilibrium. Indeed, the scaled

fixation probability of a given mutation is the probability of fixation of this mutation,

normalized by the fixation probability of neutral mutations:

Pfix(si→j , Ne)

Pfix(0, Ne)
= 2NePfix(si→j , Ne) (2.58)

In addition, the probability for a given type of mutation, from i to j, to be proposed

at equilibrium, is given by:

P(i → j) =
πiµi→j

Z
, where Z =

∑

1≤i,j≤n

πiµi→j (2.59)

And thus, the statistical average at equilibrium is:

〈2NePfix〉 =
∑

1≤i,j≤n

P(i → j)2NePfix(si→j , Ne), (2.60)

=

∑
1≤i,j≤n

πiQi→j

∑
1≤i,j≤n

πiµi→j
, from equation 2.32 and 2.59, (2.61)

= ν. (2.62)

As a result of this definition, ν = 1 for genes or sites under neutral evolution. Most

importantly, departure from 1 would be interpreted as a signature of selection on se-

quences. First, ν > 1 is interpreted as a signal of adaptive recurrent evolution, since

this means that Pfix > 1/2Ne on average. On the other hand, ν < 1 is a signal of un-

derlying purifying selection such that the sequence is constrained on average. Of note,

ν > 1 (or < 1) does not necessarily mean that the selection coefficients are positive (or

negative) on average. Finally, a mutation-selection point substitution process at equi-

librium under a time-independent fitness landscape results in ν ≤ 1, as demonstrated

in Spielman and Wilke (2015).
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2.3. Mutation-selection analogy in other scientific fields

2.3 Mutation-selection analogy in other scientific

fields

Presented in the context of phylogenetic evolution of genetic sequences, the mutation-

selection process bears many similarities and analogies between other processes present in

a variety of scientific fields outside of evolutionary biology, displaying the same underlying

mechanism and emerging properties, though with different names and aspirations. This

section is an attempt to describe analogous processes and their emerging properties. This

effort is made in the aim of giving another view of the mutation-selection process, such as

to better appreciate and conceptualize its assumptions, its limits, and the respective role

of the different components. Such attempts require to boil down the mutation-selection

mechanism into its core components, while at the same time rephrasing the description

using lexicography outside of population genetics such as to open new perceiving angles.

2.3.1 Metropolis-Hastings sampling

Obtaining a sequence of random samples from a probability distribution can be difficult,

especially when the number of dimensions is high. However, the Metropolis-Hastings

procedure based on a Markov chain Monte Carlo can sample from any probability dis-

tribution, provided that we know how to compute the probability density, or even less

restrictively any function proportional to the density (Hastings, 1970). This stochastic

procedure which is based on three steps bears many similarities with the mutation-

selection process:

• Generate a stochastic candidate from the current state, analogous to mutation.

• Calculate the acceptance ratio as the ratio of the two densities, analogous to the

selection coefficient of the mutated state.

• Stochastic acceptance or rejection based on the acceptance ratio, a process analo-

gous to drift.

Inherently, the Metropolis-Hastings procedure is based on creating and subsequently re-

ducing diversity, which allows to obtain a random sequence of samples from any distribu-

tion with a straightforward recipe, and is a critical tool in statistics and statistical physics.

2.3.2 The exploration-exploitation dilemma

Many mathematical, engineering and daily-life problems are not about sampling a state

space, but rather about finding the optimal and best state given the criteria or a func-

tion to maximize. Naturally, we would prefer deterministic (strictly reproducible) rather

than stochastic optimizing strategies to search for an optimal state. Unfortunately, when-

ever the state space is too large, often due to the curse of dimensionality, a greedy or

heuristic search of an optimal state can perform atrociously (Bellman, 1966). In high-

dimensional space, stochastic optimization tools have been deemed very valuable, such
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2.3. Mutation-selection analogy in other scientific fields

as stochastic gradient descent or so-called evolutionary algorithms (Russell and Norvig,

2010; Vikhar, 2017). Inherently, they are based on two processes, one is stochastically

creating diversity and exploring the state space, while the other is filtering the explored

states and thus reducing the diversity.

In the constrained case of a finite amount of time or attempts to find the best outcome

overall, the problem is best described by the multi-armed bandit problem. The name

comes from imagining a gambler at a row of slot machines (sometimes known as one-

armed bandits), where each slot machine provides a random reward from a probability

distribution specific to that machine. The player has to decide which machines to play,

how many times to play each machine and in which order to play them, and whether to

continue with the current machine or try a different machine, such as to maximize the

sum of rewards earned through a sequence of trials. The gambler faces a dilemma at

each trial, either reducing his regret by exploiting the best arm, or gaining information

through exploration of other arms. The best strategy to solve this dilemma can be

mathematically derived in numerous cases, and encompasses mixing strategies with a

defined ratio of exploration and exploitation (Auer et al., 2002; Kocsis and Szepesvári,

2006; Fürnkranz et al., 2006). This problem is far from being only theoretical, and

has been used to explain a multitude of phenomena, such as the movement of animals

in novel landscapes, the most efficient resource allocation for a start-up company, the

effects of age on knowledge acquisition in humans, and in the search of the most efficient

treatment in clinical trials (Berger-Tal et al., 2014; March, 1991). Another application

of the exploration-exploitation dilemma is AlphaGo, the first computational program

mastering the board game Go at the professional 9-dan level in 2017, which outcompeted

Ke Jie, the world first ranked player at the time (Silver et al., 2017, 2018). AlphaGo

has often been publicized and hyped in various media outlets stating that this feat was

possible due to machine learning, more specifically due to convolutional neural networks.

However, it is more scarcely mentioned that the AlphaGo neural network is combined with

an exploration-exploitation algorithm, or more specifically a Monte Carlo tree search. In

practice, the convolutional neural network is used as a criterion to measure the advantage

of a board configuration2, but the different moves and paths probed and trimmed are

done via an exploration-exploitation procedure.

2.3.3 Interaction between analogies

At the bottom, mutation is a process creating diversity, changing and moving the current

viable state to a novel and unknown position, fundamentally allowing exploration of

the state space. On the other hand, selection is the criteria on which a new state is

deemed a disrupting innovation or a nonviable alteration, and allows to determine which

changes to exploit and which to filter out and discard based on its fitness. Fundamentally,

mutation creates diversity and selection reduces this diversity by selecting the fittest

2Convolutional neural networks also use a stochastic gradient descent to reach convergence,
inherently leveraging the stochastic exploration and exploitation procedure to optimize the pa-
rameters of the neural network.
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2.3. Mutation-selection analogy in other scientific fields

mutants. Finally, drift arbitrates between the creation and reduction of the two processes,

it dictates how much exploration of novelty is permitted, and conversely how much

exploitation of only the fittest states is granted.

Exploration and exploitation, creation and reduction, mutation and selection, are

different names (see table 2.4) that ultimately encompass the inherently same process:

efficiently sampling and optimizing whenever the state space is too large to be traversed

in a finite amount of time.

Mutation Selection Drift

Exploration Exploitation Trade-off

Creation Reduction Arbitration

Candidate generation Acceptance Hastings ratio

Table 2.4: Mutation, selection and drift lexicographic rephrasing in different fields.

I argue that evolutionary biologists, studying and leveraging the pervasive process

of mutation and selection, can gain knowledge by recruiting insight and developments

from other fields, much like there has been many crossovers between economics and

evolution in the context of game theory.3. From a political standpoint, I also argue

that scientific research endeavour is also an exploration-exploitation dilemma, which

is arguably externally pressured to pursue exploitation, through funding of impactful

research and a publish-or-perish systemic culture in the early career stage.

3Game theory was originally developed to model economic actors’ behaviour and strate-
gies (Von Neumann and Morgenstern, 1947). It was later adopted within the framework of
evolutionary dynamics, helping to explain, for example, the emergence of altruistic behaviour in
Darwinian evolution (Smith and Price, 1973; Smith, 1982; Nowak, 2006).
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Evolutionary trajectories of sequences depend on the forces of mutation, selection

and drift, which act conjointly such that each one of them must be well studied and

understood. More precisely, models of molecular evolution requires either a given selec-

tion coefficient associated to mutation, or that the fitness of each particular sequence

is defined. In other words, the relationship between sequence and fitness must be eluci-
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3.1. Protein coding DNA sequences

dated, which is the focus of the present chapter in the special case of protein-coding DNA

sequences. To this aim, this chapter will first present the genetic code and classical phy-

logenetic codons models, which can quantify the strength of selection acting on proteins

through an aggregate parameter (called ω or dN/dS). Application of these phylogenetic

models to empirical DNA alignments can be extended to model variation of selection

across sites of the same protein, or between branches of a phylogenetic tree. Subse-

quently, mechanistic codon models are presented, assuming that the DNA sequence is at

mutation-selection balance under a time-independent fitness landscape over the 20 amino

acids. Finally, the relationship between classical and mechanistic models is investigated,

and the interpretation of the discrepancy between both models is analysed.

3.1 Protein coding DNA sequences

Proteins have a variety of molecular and cellular roles, they are the enzymes that catalyse

chemical bonds, they regulate cell processes and control their rates, they carry signals

within the cell and across membranes, they bind and transport small molecules, they

form cellular structures, among other functions. This diversity of roles is accomplished

by a variety of three-dimensional shapes. A protein’s three-dimensional shape is in turn

determined by the linear one-dimensional sequence of amino acids of which it is made

of, with protein sequences ranging from fewer than 20 to more than 5000 amino acids

across the tree of life, with an average of about 350 amino acids. Just as DNA is oriented

because of the asymmetry of nucleotides, proteins are oriented due to the asymmetry of

amino acids. One end is called the N-terminus, and the other end, the C-terminus, and

each amino acid will interact with the other amino acids in its spatial vicinity.

Although each of the 20 different amino acids has unique biochemical properties,

they can be classified broadly into four categories determining their solubility and acidity

(classification is given in table 3.1). Charged amino acids can be either basic (positively

charged) or acidic (negatively charged). However, non-charged amino acids can be polar

due to an uneven charge distribution, such that they can form hydrogen bonds with water.

Consequently, polar amino acids are called hydrophilic, and are often found on the outer

surface of folded proteins. Also, non-charged amino acids can have a uniform charge

distribution, and do not form hydrogen bonds with water. Reciprocally, these non-polar

amino acids are called hydrophobic and tend to be found in the core of folded proteins.

3.1.1 The genetic code

Because the 20 letter alphabet of proteins is different to the 4 letter alphabet of nucleic

acids (DNA and RNA), there is not a one-to-one correspondence between the two alpha-

bets. Instead, amino acids are encoded by codons, a consecutive sequence of 3 nucleotides,

yielding 43 = 64 possible permutations, more than sufficient to encode the 20 different

amino acids. Moreover, three stop codons (TGA, TAA and TAG) signal the termination

of the protein, such that 61 of the 64 codons are used to encode amino acids. Since there
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3.1. Protein coding DNA sequences

are 61 coding codons and only 20 amino acids, there is a necessary redundancy in the

code. Thus, amino acids are encoded by synonymous codons, which are interchangeable

in the sense of producing the same amino acid, with the notable exception of methionine

and tryptophan, which are only encoded by a singe codon. Altogether, the standard

DNA genetic code, which is used by many organisms, translates codon to amino acids

as given in table 3.1. To note, there are organisms that use other genetic codes, and in

addition many of our genes are mitochondrial, which also use a different genetic code.

T C A G

T

TTT TCT TAT TGT T
TTC

Phenylalanine (Phe/P)
TCC TAC

Tyrosine (Tyr/Y)
TGC

Cysteine (Cys/C)
C

TTA TCA TAA Stop (Ochre) TGA Stop (Opal) A

TTG TCG

Serine (Ser/S)

TAG Stop (Amber) TGG Tryptophan (Trp/W) G

C

CTT CCT CAT CGT T
CTC CCC CAC

Histidine (His/H)
CGC C

CTA CCA CAA CGA A
CTG

Leucine (Leu/L)

CCG

Proline (Pro/P)

CAG
Glutamine (Gln/Q)

CGG

Arginine (Arg/R)

G

A

ATT ACT AAT AGT T
ATC ACC AAC

Asparagine (Asn/N)
AGC

Serine (Ser/S)
C

ATA
Isoleucine (Ile/I)

ACA AAA AGA A

ATG Methionine (Met/M) ACG

Threonine (Thr/T)

AAG
Lysine (Lys/K)

AGG
Arginine (Arg/R)

G

G

GTT GCT GAT GGT T
GTC GCC GAC

Aspartic acid (Asp/D)
GGC C

GTA GCA GAA GGA A
GTG

Valine (Val/V)

GCG

Alanine (Ala/A)

GAG
Glutamic acid (Glu/E)

GGG

Glycine (Gly/G)

G

Table 3.1: The genetic code DNA table translating codons into amino acids. Amino
acids are represented into 4 categories based on electrochemical properties. Non-polar
in yellow (■), polar in green (■), basic in blue (■) and finally acidic in red (■). Stop
codons are represented in gray (■). The synonymous codons encoding for the same amino
acid are usually different in their third codon position, the wooble base.

Biochemical translation from codon to amino acid mechanistically emanates from

transfer RNA (tRNA). More precisely, codons bind to tRNA via an anticodon, three

consecutive bases that are complementary and antiparallel to the associated codon. On

the other end, a given tRNA binds uniquely with one of the 20 amino acids, where the

catalytic reaction is performed by aminoacyl-tRNA synthetase (Rich and RajBhandary,

1976). As a result, tRNA genes along with aminoacyl-tRNA synthetase genes constitute

the machinery necessary for translating codons into amino acids . However, there is

not a one-to-one correspondence between the 61 codons and tRNA genes. First, the set

of unique sequences of anticodon found in tRNAs genes is actually lower than 61, and

depends on the species but varies from 41 to 55 (Goodenbour and Pan, 2006). This

subset of anticodon sequences necessary to bind all 61 codons is due to non-canonical

base pairing1. More precisely, the first two positions in the codon bind strongly to the

anticodon of the tRNA (second and third positions), while the third base of the codon

can be subject to non-standard pairing with the first base of the anticodon. If the

anticodon contains a guanine at first position, codons with either U or C at the third

position can bind to this anticodon, and this phenomenon explains why there is not any

non-synonymous transition from only U to C at the third position, and why synonymous

1Canonical base pairing are A-U and G-C, where thymine (T) is replaced by uracil (U) in
RNA
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codons usually end with T or C. Also, if the anticodon contains an inosine at the first

position, codons with either C, U or A at the third position can bind to this anticodon,

such that for example leucine encoded by three codons (AUU, AUC, AUA) can be bound

by the unique anticodon IAU. Altogether, non-standard pairing explains why the number

of unique anticodons is lower than the number of possible codons, and also explains some

part of the structure of the genetic code.

Secondly, tRNA genes with the same amino-acid binding site and anticodon, which

are called isoacceptor tRNA, may vary in other parts of the tRNA sequence. Effectively,

many genes can code for the same isoacceptor tRNA, where each gene can display varying

efficiency and errors in translation, adding a layer of regulation to the process of protein

synthesis (Lowe and Eddy, 1997; Chan and Lowe, 2008; Jühling et al., 2008; Lin et al.,

2019). As a result, in some genes, some codons are more frequently represented than

other possible synonymous codons, an effect named codon usage bias. For genes that are

expressed at high levels, the codon usage is biased in favour of the codons that have a high

tRNA concentration in the cell, ultimately increasing the expression rate and decreasing

the rate of mistranslation by reducing the time of occupancy of an open site. Thus,

at a fine-grained molecular scope, a synonymous change can influence mRNA stability,

splicing process and protein folding during translation (Plotkin and Kudla, 2011; Rak

et al., 2018). However in the scope of this manuscript, such selection between synonymous

codons will not be considered. Selection for proteins will be framed at the amino-acid

level in a first approximation, and mutation, at the nucleotide level.

3.1.2 Amino-acid transitions

Because mutations are at the nucleotide level and affect only one base, any codon can

have at most 9 possible transitions to another codon as illustrated in the left panel of

figure 3.1 as a graph. Moreover, it is possible that some pairs of amino acids are not

accessible through a single non-synonymous transition between the underlying codons.

In fact, most pairs of amino acids require at least two non-synonymous transitions (114

pairs), in comparison to pairs of amino acids that are accessible through a single non-

synonymous transition (75 pairs). More precisely, the number of possible transitions

between the underlying codons for a pair of amino acids is determined by the adjacency

matrix shown table 3.2, which is illustrated in the right panel of figure 3.1 as a graph.

3.2 Classical codon models

Under the approximation that selection occurs for proteins, designing substitution mod-

els at the amino-acid level has the major shortcoming of not taking into account that

the underlying mutation process occurs at the nucleotide level. Conversely, studying

evolution of protein-coding DNA sequences only at the nucleotide level, while disre-

garding the genetic code neglects the consequences that nucleotide variation can have

onto protein sequences.

35



3.2. Classical codon models

AAA

AAG

AAC

AAT

ACA

ACC

ACG

ACT

AGA

AGG

CGA

CGC
CGG

CGTAGCAGTTCA
TCC

TCG
TCT
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ATC

ATT

ATG

CAA

CAG
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CCG
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CTT
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GAG
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GCA

GCC
GCG GCT GGA GGC
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Figure 3.1: Graphs of possible one nucleotide transitions between codons (left panel) and
between amino acids (right panel). Nodes correspond to codons (left panel) and amino
acids (right panel), and their colour represents the encoded amino acid. Additionally,
for amino acids, the size of nodes represents the number of underlying codons. An edge
between two codons depicts a one nucleotide transition such that a codon can have at most
9 possible transitions. Similarly, an edge between two amino acids correspond to a one
nucleotide non-synonymous transition between the underlying codons, and the width of
the edges represents the number of such possible transitions. Non-synonymous transitions
are represented in a colour gradient, while synonymous transitions are depicted in black.
The graph of the 61 codons contains 263 transitions, 67 of them are synonymous while 196
are non-synonymous. Codons encoding for the same amino acid are all fully connected
by synonymous changes, except for serine where a transition from the set TCT, TCG,
TCC, TCA to the set AGT, AGC requires passing through another amino acid, hence at
least two non-synonymous transitions. From the perspective of amino acids, the graph
of the 20 amino acids contains 75 non-synonymous transitions. The graph is not fully
connected and does not form a clique. Moreover, the most distant amino acids are at
most three transitions away, because a transition from methionine to tyrosine requires
at least three non-synonymous transitions. Altogether, for all of the possible 190 pairs
of amino acids, 114 pairs require at least two non-synonymous transitions, and one pair
(M-Y) requires at least three non-synonymous transitions.
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K N T R S I M Q H P L E D A G V Y C W F

K - 4 2 2 0 1 1 2 0 0 0 2 0 0 0 0 0 0 0 0

N - - 2 0 2 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0

T - - - 2 6 3 1 0 0 4 0 0 0 4 0 0 0 0 0 0

R - - - - 6 1 1 2 2 4 4 0 0 0 6 0 0 2 2 0

S - - - - - 2 0 0 0 4 2 0 0 4 2 0 2 4 1 2

I - - - - - - 3 0 0 0 4 0 0 0 0 3 0 0 0 2

M - - - - - - - 0 0 0 2 0 0 0 0 1 0 0 0 0

Q - - - - - - - - 4 2 2 2 0 0 0 0 0 0 0 0

H - - - - - - - - - 2 2 0 2 0 0 0 2 0 0 0

P - - - - - - - - - - 4 0 0 4 0 0 0 0 0 0

L - - - - - - - - - - - 0 0 0 0 6 0 0 1 6

E - - - - - - - - - - - - 4 2 2 2 0 0 0 0

D - - - - - - - - - - - - - 2 2 2 2 0 0 0

A - - - - - - - - - - - - - - 4 4 0 0 0 0

G - - - - - - - - - - - - - - - 4 0 2 1 0

V - - - - - - - - - - - - - - - - 0 0 0 2

Y - - - - - - - - - - - - - - - - - 2 0 2

C - - - - - - - - - - - - - - - - - - 2 2

W - - - - - - - - - - - - - - - - - - - 0

F - - - - - - - - - - - - - - - - - - - -

Table 3.2: Number of possible one nucleotide non-synonymous transitions between
amino acids, integrating over the underlying codons, represented as an adjacency ma-
trix. For all the possible 190 pairs of amino acids, only 75 pairs contain at least one
non-synonymous transition.

These shortcomings are both addressed by codon models, where the complexity of the

genetic code is seen as an asset rather than an encumbrance. Indeed the redundancy in

the genetic code can be leveraged to disentangle mutation and selection in protein-coding

DNA sequences, under the approximation that selection occurs at the protein level in first

approximation, while the mutation process occurs at the DNA level. The genetic code

allows to split mutations into synonymous and non-synonymous mutations, where syn-

onymous mutations are deemed neutral, and non-synonymous mutations are considered

under selection. Thus, by contrasting the two types of substitutions, non-synonymous

against synonymous, one can estimate the impact of selection, effectively factoring out

the contribution of the mutation rate and the mutation patterns. This idea was already

present in the earliest landmark contributions in molecular evolution (Kimura, 1968; King

and Jukes, 1969), using simple statistical approaches. However, the mathematical com-

plexities created by the very irregular nature of the genetic code led to the progressive

development of more sophisticated probabilistic models, formalized in a likelihood frame-

work. The first codon models were proposed independently by Muse and Gaut (1994) and

Goldman and Yang (1994). The mathematical formalism is now presented in more detail.

3.2.1 The Muse & Gaut formalism

Here, we follow the formalism of codon models pioneered by Muse and Gaut (1994), and

further developed by Nielsen and Yang (1998). A 4 × 4 mutation rate matrix R is first
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defined at the nucleotide level. In its most general form consisting of 12 free parameters:

R =

A C G T





A − RAC RAG RAT

C RCA − RCG RCT

G RGA RGC − RGT

T RT A RT C RT G −

(3.1)

By definition of the instantaneous rate matrix, the sum of the entries in each row of the

nucleotide rate matrix R is equal to 0, giving the diagonal entries:

Raa = −
∑

b6=a

Rab, ∀a ∈ {A,C,G, T} (3.2)

Most often, this matrix is assumed to be a generalized time-reversible (Tavaré, 1986),

or in short GTR, defined by nucleotide equilibrium frequencies (σ) and by symmetric

exchangeability rates (ρ) consisting of 9 free parameters:

R =

A C G T





A − ρACσC ρAGσG ρATσT

C ρACσA − ρCGσG ρCTσT

G ρAGσA ρCGσC − ρGTσT

T ρATσA ρCTσC ρGTσG −

(3.3)

Then, grouping nucleotides into codons, the mutation rate induced by this nucleotide

process from codon i to j depends on the underlying nucleotide change between the

two codons. Thus, if codons i and j are only a mutation away, let M(i, j) denote the

nucleotide change between them (e.g. M(AAT,AAG) = TG). With this notation, the

mutation rate µi,j from codon i to j is:

µi,j =

{
RM(i,j) if codons i and j are one mutation away,

0 else.
(3.4)

In other words, the mutation rate between codons is simply the mutation rate between

the underlying nucleotide change.

At the codon level, synonymous mutations are deemed neutral and the rate of syn-

onymous substitutions Qi,j is equal to the mutation rate:

Qi,j = µi,j , (3.5)

= RM(i,j). (3.6)

In contrast, non-synonymous mutations are considered under selection such that the

rate of substitution is modulated by a factor ω:

Qi,j = ωµi,j , (3.7)

= ωRM(i,j). (3.8)
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Altogether, the 61-by-61 codon substitution matrix of Muse and Gaut (1994) is de-

fined entirely by the mutation matrix (R), ω and the genetic code:





Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = RM(i,j) if codons i and j are synonymous,

Qi,j = ωRM(i,j) if codons i and j are non-synonymous.

(3.9)

Again, by definition of the instantaneous rate matrix, the sum of the entries in each row

of the codon substitution rate matrix Q is equal to 0, giving the diagonal entries:

Qi,i = −
61∑

j 6=i,j=1

Qi,j . (3.10)

3.2.2 Interpretation of the model

With the definition given above, ω identifies with the ratio of the rate of non-synonymous

substitutions over the rate of synonymous substitutions, hence dN/dS . More globally,

given how its parameterization carefully distinguishes between synonymous and non-

synonymous substitutions, the model can be seen as trying to separate the effects of the

mutation rates (captured by R) and those of selection at the non-synonymous level

(captured by ω).

All non-synonymous mutations are considered equivalent, and ω encompasses the

average strength of selection exercised on them. Most importantly, ω > 1 is due to an

excess in the rate of non-synonymous substitutions, indicating that the protein is under

adaptive evolution. Conversely, a default of non-synonymous substitutions, leading to

ω < 1, means the protein is on average under purifying selection. It is worth noting that

the protein can be on average under purifying selection (ω < 1), but can have specific

regions undergoing positive selection (ω > 1).

3.2.3 Equilibrium properties

Under the Muse & Gaut formalism, the codon equilibrium frequencies (π) depend only

on the equilibrium nucleotide frequencies (σ), but not on ω:

πi =

[
∏

k∈{1,2,3}
σi[k]

]

61∑
j=1

σj[1]σj[2]σj[3]

(3.11)

=

[
∏

k∈{1,2,3}
σi[k]

]

(1 − σTσAσA − σTσAσG − σTσGσA)
, (3.12)

where i[k] denotes the nucleotide at position k ∈ {1, 2, 3} of codon i, and the sum

in the denominator can be obtained by simply correcting for the stop codons (TAA,

TAG and TGA).
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As a result of equation 3.12, the Muse & Gaut formalism predicts that the nucleotide

composition is the same for all 3 positions of the codons. However it has empirically been

observed that the nucleotide compositions are in fact not identical (Singer and Hickey,

2000). These modulations across the three coding positions have been accommodated

using the so-called 3x4 formalism (Muse and Gaut, 1994; Goldman and Yang, 1994),

allowing for different nucleotide rate matrices at the three positions. However, this is

problematic, since this modelling has the consequence that synonymous substitutions

occur at different rates at the first and third positions. For instance, mutations from

codon CTC to CTT or from CTA to TTA are both synonymous (leucine) and from

C to T, but the 3x4 formalism would give them different rates. Yet, in reality, the

mutation process is blind to the coding structure, and should be homogeneous across

coding positions, and if neutral, all mutations from C to T should have the same rate.

In any case, this suggests that the mutation matrices estimated by codon models are not

correctly reflecting the mutation rates between nucleotides.

3.2.4 The Goldman & Yang formalism

In the alternative Goldman and Yang (1994) formalism, the mutation rate between two

codons does not depend only on the exchangeability between the underlying nucleotide

change (ρM(i,j)), but also on the frequency of the target codon (πj):

µi,j = ρM(i,j)πj . (3.13)

Careful examination of this model reveals a number of peculiar properties, which

seem undesirable. For example, under a mutational bias toward T, a synonymous muta-

tion from codon AAC to AAT (asparagine) would have a lower instantaneous rate than

a substitution from codon TTC to TTT (phenylalaline), both being synonymous and

from C to T at third position. In this formalism, the mutation involving a specific codon

position depends on the nucleotide states at the other two positions, even if the mutation

is synonymous (neutral). Moreover, it has been shown that this alternative formalism

induces different estimations of the strength of selection ω (Kosakovsky Pond and Muse,

2005b; Yap et al., 2010; Spielman and Wilke, 2015). Altogether, such alternative for-

malisms are theoretically problematic, and the original Muse & Gaut formalism remains

the mechanistically justified framework (Rodrigue et al., 2008a).

As a result, throughout this manuscript the symbol ω will be used specifically for the

multiplicative factor appearing in the Muse and Gaut (1994) formalism (see section 3.2.1),

whereas dN/dS will be used to refer generically to the ratio of non-synonymous over

synonymous substitution rates, regardless of the specific formalism. Hence, whenever

dN/dS is used in this manuscript instead of ω, the underlying specific formalism is not

considered necessary to the point raised. Contrarily, whenever ω is used, it refers to the

specific Muse & Gaut formalism of section 3.2.1. A notable exception for this conventions

is in the third article (chapter 9 and supplementary materials in chapter 12), where

ω will be used for readability while having a slightly different meaning (mean scaled
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fixation probability of non-synonymous mutations) but still identifies with the ratio of

non-synonymous over synonymous substitution rates (see section 3.4.1).

3.2.5 Complexification of classical codon models

Classical models of codon substitutions have been extensively applied to protein-coding

sequence alignments, to estimate the ratio of non-synonymous over synonymous sub-

stitution rates, dN/dS . Such models capture the average effect of selection on non-

synonymous mutations, without seeking to discriminate between different types of mu-

tations. To circumvent such limitation, Yang et al. (1998) introduced a codon model in

which dN/dS depends on the distance between amino acids, measured in terms of the

Grantham (1974) distance. Additionally, models introduced several dN/dS to account

for amino-acid chemical properties (polarity, volume, charge, and so on) in classical

codon models (Dutheil, 2008).

One particularly important application of classical codon models has been to char-

acterize genes under positive selection (i.e. with a dN/dS > 1), or sites within genes or

specific lineage under accelerated evolution. As a result, variants of codon models have

been developed that can provide estimates of dN/dS for each site within a gene, or for

each branch within a phylogenetic tree. Moreover, these codon models have also proved

to be valuable to quantify and assess the modulation of the selective constraints more

generally imposed on protein-coding sequences (see section 5.2).

3.2.6 Variation across sites

The strength of selection is not typically homogeneous along the protein sequence, and

it has been rapidly recognized that it could be useful to estimate the dN/dS for each

site individually, as opposed to globally over the entire sequence. This turns out to be

particularly important for detecting recurrent diversifying selection. Indeed, recurrent

positive selection might often be concentrated in a small region of the protein (e.g. domain

or site of the protein that is more directly interacting with a pathogen), the rest of the

protein being under a regime of purifying selection. Estimating dN/dS at the site level

will make it possible to detect such regions under positive selection. In contrast, the

gene-level dN/dS will generally be below 1.

However, the statistical information available along the tree for a specific site is sparse

such that sites sharing similar patterns are merged together to gather enough signal.

Practically, in a popular approach of so-called random-site phylogenetic codon models,

dN/dS is allowed to vary across sites, via a finite mixture model (Nielsen and Yang,

1998; Yang et al., 2000, 2005; Huelsenbeck et al., 2006). Generally, for detecting positive

selection a category of sites is constrained to be under dN/dS > 1. Both proportions

of sites and values of the different dN/dS categories are then estimated by maximum

likelihood or Bayesian inference (see chapter 4). Sites under adaptive evolution are then

detected based on their empirical Bayes posterior probability dN/dS > 1 (Huelsenbeck

and Dyer, 2004; Yang et al., 2005). To note, in this context of site-specific finite mixture
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models, methods have also proposed to estimate both dN and dS separately (Kosakovsky

Pond and Muse, 2005b; Spielman et al., 2016).

A long series of site models has been proposed, most of which have been implemented

in PAML (Yang, 1997, 2007), but also in MrBayes for the infinite mixture version (Huelsen-

beck and Ronquist, 2001; Ronquist et al., 2012). Specific applications at the level of the

entire exome have uncovered sites of the sequence under positive recurrent selection (Ko-

siol et al., 2008). Other analyses have revealed the importance of host-pathogen or

host-virus interactions in contributing to strong signals of ongoing adaptation in protein-

coding sequences (Enard et al., 2016).

Finally, independently of the question of detecting positive selection, site models also

turn out to be very valuable models, in the aim of uncovering selective pressures acting

on specific sites. This can be used, for instance, to investigate the biophysical correlates

of the strength of purifying selection at the site level (see section 5.2.2).

3.2.7 Variation across branches

Beside variation across sites, the strength of selection is not typically homogeneous along

the phylogenetic tree, and it has also been recognized that it could be useful to model

this variation. A first approach allows for a different dN/dS only on a given branch, or

on a subset of the phylogeny, chosen a priori based on biological assumptions (Yang and

Nielsen, 1998). For example, such models can detect an adaptive process ongoing during

the divergence of one lineage, which can allow for the detection of the proteins responsible

for speciation (Yang and Nielsen, 1998; Zhang and Nielsen, 2005). The most extreme

version of this model simply assumes that each branch has its own dN/dS , without any

constraints (Popadin et al., 2007). To avoid overfitting, branches can be clustered based

on their substitution rates, using a sequential testing approach (Dutheil et al., 2012).

Alternatively, dN/dS can be modelled as a continuous trait, varying continuously

along the phylogeny, and susceptible to show phylogenetic inertia. To account for this,

dN/dS is not mathematically formalized as a parameter anymore, but instead, it is mod-

elled as a stochastic process, and more specifically, a log-Brownian process, splitting at

each node of the tree into independent processes. This modelling approach was previously

used in the context of the comparative method, to model the evolution of quantitative

traits observable at the tips (Felsenstein, 1985; Huelsenbeck and Rannala, 2003). It

was then recruited to model the variation in the total rate of substitution, in the con-

text of the so-called auto-correlated relaxed clock models, used to estimate divergence

times (Thorne et al., 1998). Finally, it was used to model the variation, independently,

of dS and dN (Seo et al., 2004), or of dS and dN/dS (Lartillot and Poujol, 2011).
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Figure 3.2: dN/dS variations across branches in mammals. The Brownian process
(i.e. logarithm of dN/dS) starts at the root of the dated tree, runs along branches and
splits at each node of the tree into two independent children processes until reaching the
extant species. Along each branch, the value of dN/dS used in the substitution matrix
is taken as the average of the trajectory between the two nodes at the tips of the branch
(i.e. child and parent). However, for the representation, a gradient between the child
and parent node highlight the change of dN/dS along this specific branch. The dataset
consist of 77 extant taxa on a randomly chosen set of 18 coding sequences (CDS) from
OrthoMam database (Ranwez et al., 2007; Scornavacca et al., 2019). This analysis was
performed under the Muse & Gaut formalism and conducted on the software BayesCode

(see chapter 4). Variations in dN/dS along the tree can also be related to ecological
variables, or life-history traits.

The external factors determining the variation dN/dS across lineages have subse-

quently been investigated, primarily focused on environmental variables and life-history

traits that can vary between species. This has been done using either sequential ap-

proaches, first estimating the variation in dN/dS using some of the methods mentioned
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above, and then using the classical comparative method to correlate the estimated varia-

tion with independently observed quantitative or life-history traits (Popadin et al., 2007;

Lanfear et al., 2010a; Romiguier et al., 2014).

Thereafter, integrative inference methods combining both molecular sequences and

quantitative traits have been developed, jointly modelling the variation of all of these

variables using a single multivariate Brownian process (Lartillot and Poujol, 2011). Each

entry of the process describes the evolution of one of the variables of interest: dS , dN/dS ,

quantitative traits, etc. The model can then be fitted on an empirical data set consisting

of a multiple sequence alignment of coding sequences and a matrix of quantitative traits

observed in extant species. This leads to a joint estimation of the stochastic process

and the covariance matrix, thus giving estimates of the covariance between dN/dS and

traits, corrected for phylogenetic inertia.

Applications of this integrative approach also found that dN/dS correlates positively

with traits such as longevity and body mass (Lartillot and Poujol, 2011; Figuet et al.,

2017). Since lineages with a large body size and extended longevity typically corre-

spond to low Ne (Romiguier et al., 2014), these empirical correlations suggest a negative

correlation between dN/dS and Ne, thus confirming the theoretical prediction of the

nearly-neutral theory of evolution. Similarly, and more directly, dN/dS was found to

correlate negatively with the synonymous diversity (πS = 4Neu), which is a molecular

proxy of effective population size (Brevet and Lartillot, 2019). These important results

confirm one of the key predictions of the nearly-neutral theory. However, the universality

and robustness of the correlation between dN/dS and life-history traits is still debated,

and further investigations are required (Nabholz et al., 2013; Lanfear et al., 2014; Figuet

et al., 2016; Boĺıvar et al., 2019).

3.2.8 Variation across sites and branches

Naturally, both space (site-specific) and time (branch-specific) refinements mentioned

above led to the development of the so-called branch-site models (Yang and Nielsen,

2002; Zhang and Nielsen, 2005; Kosakovsky Pond et al., 2011; Murrell et al., 2012, 2013).

The fine-grained tuning of site-branch models increased statistical power by seeking short

and strong episodes of adaptive selection on a background of purifying selection. How-

ever, in the case of Red-Queen processes ongoing on the protein, the episodes detected

by branch-site models would merely be a small fraction of the underlying adaptation.

Indeed the overall tree is under adaptive process and one cannot contrast a branch

to the rest of the tree.

3.3 Mechanistic codon models

Classical codon models presented above capture the average effect of selection on non-

synonymous mutations, without seeking to discriminate between different types of mu-

tations. In contrast, mechanistic codon models seek to predict individually all substi-

44



3.3. Mechanistic codon models

tution rates, for each position and between each pair of codons, in an explicit model

of the adaptive landscape.

3.3.1 The Halpern & Bruno formalism

The Halpern and Bruno (1998) formalism assumes that the protein-coding sequence is

at mutation-selection balance under a time-independent fitness landscape, with a fit-

ness that is multiplicative across sites (i.e. without epistasis). As a result, the fitness

landscape is characterized by a fitness vector over the 20 amino acids at each site. Fur-

thermore, the substitution process at each position is independent of the current state

at all other positions, and it will generally be different at each site (Rodrigue et al.,

2010; Tamuri and Goldstein, 2012).

In the following equations, I omit the dependence on sites, such that the fact that

this process is site-specific is implicit. Consider a given site, the probability of fixation

depends on the difference in fitness between the amino acid encoded by the mutated

codon (fA(j)) and the amino acid encoded by the original codon (fA(i)), where A(i)

denotes the amino acid encoded by codon i. The rate of substitution from codon i to

j is derived from equation 2.35:

Qi,j = µi,j

4Ne

(
fA(j) − fA(i)

)

1 − e4Ne(f
A(i)−f

A(j))
, (3.14)

= µi,j

FA(j) − FA(i)

1 − eF
A(i)−F

A(j)
. (3.15)

Altogether, the 61-by-61 codon substitution matrix of mechanistic codon models Q

is defined entirely by the mutation matrix (R), the vector of 20 amino-acid relative

fitness (f) and the genetic code:




Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = µi,j if codons i and j are synonymous,

Qi,j = µi,j

FA(j) − FA(i)

1 − eF
A(i)−F

A(j)
if codons i and j are non-synonymous.

(3.16)

Because the process is time-reversible (see chapter 2), from equation 2.55, the sta-

tionary distribution equals to:

πi =

[
∏

k∈{1,2,3}
σi[k]

]
eF

A(i)

61∑
j=1

σj[1]σj[2]σj[3]FA(j)

. (3.17)

The stationary frequency of a codon is ultimately the product of the nucleotide frequen-

cies (σ) at its three positions and the scaled Wrightian fitness of the amino-acid (eF
A(i)).

3.3.2 Empirical calibration of the model

Fitting the mutation-selection model on a sequence alignment, via equation (3.16), results

in an estimation of the nucleotide mutation rate matrix as well as the amino-acid fitness

45



3.3. Mechanistic codon models

landscapes at each site of the sequence. Several approaches have been used to do this.

In the original approach, Halpern and Bruno (1998) leveraged the detailed balance:

πi

πj
=
Qj,i

Qi,j
(3.18)

=
µj,i

(
FA(i) − FA(j)

) (
1 − eF

A(i)−F
A(j)

)

µi,j

(
FA(j) − FA(i)

) (
1 − eF

A(j)−F
A(i)

) (3.19)

=
µj,i

(
eF

A(i)−F
A(j) − 1

)

µi,j

(
1 − eF

A(j)−F
A(i)

) (3.20)

=
µj,ie

F
A(i)

(
e−F

A(j) − e−F
A(i)

)

µi,jeF
A(j)

(
e−F

A(j) − e−F
A(i)

) (3.21)

= eF
A(i)−F

A(j)
µj,i

µi,j
(3.22)

Such that the scaled selection coefficients are related to the stationary codon frequencies:

FA(i) − FA(j) = ln

(
πiµi,j

πjµj,i

)
(3.23)

And finally the substitution rate between codon i and j is:

Qi,j = µi,j

FA(j) − FA(i)

1 − eF
A(i)−F

A(j)
(3.24)

= µi,j

ln
(

πjµj,i

πiµi,j

)

1 −
πiµi,j

πjµj,i

(3.25)

As a result, the substitution rate from codon i to j can be approximated based on a plu-

gin estimator for both the mutational process and the amino-acid frequencies, indepen-

dently estimated. Alternatively, site-specific amino-acid preferences have been estimated

either by penalized maximum likelihood (Tamuri and Goldstein, 2012; Tamuri et al.,

2014), or in a Bayesian context using an infinite mixture based on a Dirichlet process

prior (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014). Comparison of both inference

approaches yields similar results in terms of estimated profiles and their induced selec-

tive constraint on protein-coding DNA sequences (Spielman and Wilke, 2016). Finally,

instead of estimating the fitness landscape directly on the multiple sequence alignment,

deep mutational scanning approaches can be used to estimate fitness profiles experimen-

tally (Bloom, 2014b,a), as presented in chapter 5.

3.3.3 Modulating the fitness landscape across branches

Thus far, in the mutation-selection formalism, fitness landscape has been considered

static. In practice, fitness landscapes are dynamic and changing with time (Naumenko

et al., 2012; Bazykin, 2015). In particular, selective pressures may change following one

(or more) transitions to a new environment (e.g.: a new host). Changes in selective

pressures induced by environmental changes can be modelled in a mutation-selection
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framework by introducing different fitness profiles in different parts of the tree (Tamuri

et al., 2009). Similarly, phenotypic convergent evolution has been investigated in re-

lation to underlying molecular convergence at the level of codons. In this context, if

a specific codon site is responsible for the phenotypic convergence, the species sharing

the convergent phenotype should also share convergence in amino-acid profiles at this

specific site (Parto and Lartillot, 2017, 2018)

3.3.4 Mutation-selection and codon usage

Another example of a mutation-selection mechanistic codon model is one in which codon

usage bias is modelled, in particular, a model in which each synonymous codon of the

same amino acids have different fitness (i.e. Fi for all 61 codons) as in Yang and Nielsen

(2008). It is important to note that contrarily to the Halpern & Bruno formalism, codon

preferences are not site-specific but instead are estimated gene-wide. In this model,

substitution rates are defined as:




Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = RM(i,j)
Fj − Fi

1 − eFi−Fj
if codons i and j are synonymous,

Qi,j = ωRM(i,j)
Fj − Fi

1 − eFi−Fj
if codons i and j are non-synonymous.

(3.26)

With such a definition, this model is hybrid between the classical model (due to ω)

and the mechanistic mutation-selection codon model (due to the selection coefficients

for codons Fi). Such hybrid models have the interest of measuring the average effect of

selection on non-synonymous mutations through dN/dS without making the assumption

that synonymous mutations are neutral.

3.4 Relationship between mechanistic and clas-

sical codon models

Even though classical codon models have fewer parameters than mechanistic codon mod-

els, it is important to realize they are not nested. Indeed, it is impossible to find a given

set of parameters for which the two models are equivalent, except by assuming all sites to

have a uniform fitness distribution over amino acids in the Halpern & Bruno mutation-

selection model, and setting ω = 1 in the Muse & Gaut model, but this is really a trivial

case. They are inherently different and proceed from a different philosophy. On one

hand, mechanistic models rely on an explicit fitness landscape, while, on the other hand,

classical models capture the average effect of selection through a single ω parameter.

The difference can be highlighted by considering the case of reverse mutations. In a

mechanistic model (section 3.3), a negative selection coefficient associated with a given

non-synonymous mutation is always matched by a positive selection coefficient for the

reverse mutation. As a result, the rate of substitution will be lower than the mutation

rate in one direction, but higher in the other direction. In contrast, in classical codon
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models (section 3.2), if ω < 1 (respectively, ω > 1), the rate of substitution is lower

(respectively, higher) than the synonymous substitution rate in the two directions.

Nevertheless, it is possible to make conceptual and quantitative connections between

these two modelling paradigms. This point was explored in detail by Spielman and

Wilke (2015), Dos Reis (2015), Jones et al. (2016) and Rodrigue and Lartillot (2016),

summarized in table 3.3.

Symbol Interpretation

dN Non-synonymous substitution rate.

dS Synonymous substitution rate.

dN/dS Ratio of non-synonymous over synonymous substitution rate.

ν Mean scaled fixation probability of non-synonymous mutations.

ω Scaling factor for all non-synonymous substitutions in the Muse and Gaut (1994) formalism.

ω0 Induced νHB in the Halpern and Bruno (1998) mechanistic formalism.

ω∗ Scaling factor for all non-synonymous substitutions in the Halpern and Bruno (1998) formalism.

Table 3.3: Relationship between classical and mechanistic codon models

3.4.1 The Halpern & Bruno mechanistic codon model as
a nearly-neutral model

Once fitted to the data, the classical Muse & Gaut (MG) formalism returns estimates of

mutation rates and ω (see subsection 3.2.1). From there, one can compute the substitu-

tion and mutation rates of each codon substitution. Using equation 2.56 on the subset

of non-synonymous mutations thus gives νMG at stationarity:

νMG =

61∑
i=1

πi
∑

j∈Ni

Qi,j

61∑
i=1

πi
∑

j∈Ni

µi,j

(3.27)

=

61∑
i=1

πi
∑

j∈Ni

ωµi,j

61∑
i=1

πi
∑

j∈Ni

µi,j

(3.28)

= ω, (3.29)

where Ni is the set of non-synonymous codons neighbours to codon i. Such equation

is also true for any classical codon model formalism, where this identity between ν and

dN/dS bears much importance.

This rate of non-synonymous substitutions over mutations (ν) can be interpreted as

the mean scaled fixation probability of non-synonymous mutations (see section 2.2.5),

such that even if classical codon models are not mechanistic in essence, the parame-

ter dN/dS can be interpreted a posteriori as the mean scaled fixation probability of

non-synonymous mutations.

On the other hand, the mechanistic codon models in the Halpern & Bruno (HB)

formalism return estimates of mutation rates and fitness profiles of amino acids (see sub-
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section 3.3.1). From there, one can also compute the fixation probability individually for

each codon substitution. Likewise, using equation 2.56 on the subset of non-synonymous

mutations gives (νHB) at stationarity:

νHB =

61∑
i=1

πi
∑

j∈Ni

Qi,j

61∑
i=1

πi
∑

j∈Ni

µi,j

(3.30)

=

61∑
i=1

πi
∑

j∈Ni

FA(j) − FA(i)

1 − eF
A(i)−F

A(j)

61∑
i=1

πi
∑

j∈Ni

µi,j

. (3.31)

Hence, for the mutation-selection mechanistic model, νHB can be interpreted as the result-

ing dN/dS induced by the model (Spielman and Wilke, 2015; Dos Reis, 2015). Indeed,

simulation experiments conducted by Spielman and Wilke (2015) under a mutation-

selection model then analysed using a classical codon model indeed showed agreement

between the induced and estimated dN/dS . To note, inference under the Muse &

Gaut formalism showed the best agreement compared to other formalisms of classi-

cal codon models.

Moreover, Spielman and Wilke (2015) showed mathematically that, if the underly-

ing process is at equilibrium under a time-independent fitness landscape (nearly-neutral

regime), then the mean scaled fixation probability νHB induced by the model will al-

ways be lower than 1. In other words, they showed that mechanistic mutation-selection

codon models display the important feature of genuinely accounting for purifying se-

lection. From a dynamic perspective, a non-synonymous mutation from a codon with

high fitness to another codon will have a low probability of fixation, since the mutated

codon will have a lower fitness. At equilibrium, this low probability of fixation of the

other codon results in a high frequency of the codon with higher fitness. Essentially,

at equilibrium the codon frequencies only fluctuate at the mutation-selection balance,

and all the mutations are neutral on average, but slightly deleterious or advantageous,

hence the name nearly-neutral models (Ohta, 1973, 1992; Rodrigue and Lartillot, 2016).

This justifies the interpretation of the Halpern & Bruno mechanistic codon models as

an implementation of the nearly-neutral regime.

Altogether, classical codon substitution models will interpret a mechanistic mutation-

selection model as purifying selection (ω < 1). Accordingly, the mean scaled probability

of fixation νHB has also been denoted ω0 (Rodrigue and Lartillot, 2016).

3.4.2 The Halpern & Bruno mechanistic codon model as a
nearly-neutral null model

As seen above, under the assumption that the protein is under a nearly-neutral regime,

the predicted ω0 (mutation-selection model) and the estimated ω (classical model) should

be the same (Spielman and Wilke, 2015). But assumptions of the models can be bro-
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ken, resulting in discrepancy between the ω0 induced (or predicted) by the Halpern &

Bruno mechanistic model, once fitted on the data, and ω directly estimated by clas-

sical codon models.

This deviation can be captured as a gene-wide multiplying factor ω∗ (Rodrigue and

Lartillot, 2016):




Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = µi,j if codons i and j are synonymous,

Qi,j = ω∗µi,j

FA(j) − FA(i)

1 − eF
A(i)−F

A(j)
if codons i and j are non-synonymous.

(3.32)

Since fitness profiles are capturing ω0, the resulting ω which is a function of the model

parameters, can be interpreted as:

ω = ω∗ × ω0 (3.33)

This modelling approach is hybrid between mechanistic and phenomenological model,

since the parameter ω∗ cannot be interpreted mechanistically. Moreover, the deviation of

ω∗ can bend upward or downward, where different interpretations can be given of both

cases.

3.4.3 Adaptive evolution

The Halpern & Bruno formalism assumes that fitness landscapes are not dependent on

time. Alternatively, time-dependent fitness landscapes are known as seascape (Mustonen

and Lässig, 2009). Because of the external movement of the fitness landscape, similarly

to Red-Queen dynamics, the current sequence is more likely to slide into a fitness valley

rather than on top of a peak when the landscape is moving. In other words, because

the current sequence is at mutation-selection-drift balance and the movement of the

landscape is external, the fitness of the sequence is not likely to increase in the new

fitness landscape. As a result, external changes of the landscape results in lower fitness

of the current sequence on average. The resulting dynamics is that selection pushes the

sequence to climb up the time-dependent fitness landscape constantly, and the protein

sequence is tracking a constantly moving fitness optimum.

Since the protein sequence is always lagging behind the moving target defined by the

amino acid preferences, and since substitutions are accepted preferentially if they are

in the direction of this target, substitutions are on average adaptive. In other words,

the sequence would become increasingly maladaptive in the absence of such positively

selected substitutions. Thus, breaking the assumption of time independence of amino-

acid preferences leads to the estimation of an induced ω0 lower than the realized ω:

ω ≥ ω0 ⇐⇒ ω∗ ≥ 1 (3.34)

3.4.4 Epistasis and entrenchment

The nearly-neutral assumption of the Halpern & Bruno formalism can also be broken if

there is no independence between sites, known as epistasis between sites. Unfortunately,

50



3.4. Relationship between mechanistic and classical codon models

one consequence of epistatic interactions is that even if a mutation is nearly-neutral upon

fixation, subsequently fixed mutations on other sites make the original substitution more

and more deleterious to revert over time (Gong and Bloom, 2014; Lunzer et al., 2010; Mc-

candlish et al., 2013). This effect called entrenchment results in the current amino acids

reinforcing their relative fitness with time, in opposition to constantly lagging behind a

moving target (Pollock et al., 2012). In other words, at the moment of a substitution, the

target amino acid has a nearly equal relative fitness, which on average then increases with

time (Goldstein and Pollock, 2016, 2017). Contradictory to what happens during adap-

tation, breaking the assumption of independence between sites leads to entrenchment

and the realized ω being lower than the induced ω0 (Rodrigue and Lartillot, 2016):

ω ≤ ω0 ⇐⇒ ω∗ ≤ 1 (3.35)

Altogether, a departure from near-neutrality with a ω ≥ ω0 is a signature of an

ongoing Red-Queen process and that the protein is under ever-changing adaptation. On

the other hand, a ω ≤ ω0 is a signature of epistatic interaction between amino acids.

However, one shortcoming of nearly-neutral codon substitution models is that if one

does not get a statistical departure from near-neutrality (ω = ω0), it could be due to a

mixture of both Red-Queen and epistatic processes that cannot be disentangled.
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